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Introduction

In this thesis we will study the Dold-Kan correspondence, a celebrated result which
belongs to the field of homological algebra or simplicial homotopy theory. Abstractly,
one version of the theorem states that there is an equivalence of categories

K : Ch(Ab) ' sAb : N,

where Ch(Ab) is the category of chain complexes and sAb is the category of simplicial
abelian groups. This theorem was discovered by A. Dold [Dol58] and D. Kan [Kan58]
independently in 1957. Objects of either of these categories have important invariants.
A more refined statement of this equivalence tells us that there is a natural isomorphism
between homology groups of chain complexes and homotopy groups of simplicial abelian
groups. A bit more precise:

πn(A) ∼= Hn(N(A)) for all n ∈ N.

In the first section some definitions from category theory are recalled, which are es-
pecially important in Sections 3 and 4. In Section 2 we will discuss the category of
chain complexes and in the end of this section a motivation from algebraic topology will
be given for these objects. Section 3 then continues with the other category involved,
the category of simplicial abelian groups. This section starts with a slightly more gen-
eral notion and it will be illustrated to have a geometrical meaning. In Section 4 the
correspondence will be defined and proven. In the last section (Section 5) the refined
statement will be proven and in the end some more general notes about topology and
homotopy will be given, justifying once more the beauty of this correspondence.
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1. Category Theory

Before we will introduce the two categories Ch(Ab) and sAb, let us begin by recalling
some basic category theory. The reader who is already familiar with these concepts, is in-
vited to skip this section. We will recall the notions of categories, functors, isomorphisms,
natural transformations, equivalences, adjunctions and the Yoneda lemma.

We will briefly define categories and functors to fix the notation. We will not provide
many examples or intuition in these concepts. For a more elaborated exposition one
should have a read in [Awo10] or [ML98]. The more complicated definitions will be
discussed in a bit more detail.

1.1. Categories.

Definition 1.1. A category C consists of a collection of objects, a set of maps HomC(A,B)
for each two objects A,B ∈ C and a binary operator composition

− ◦ − : HomC(B,C)×HomC(A,B)

such that

• composition is associative, i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f and

• there exists an neutral element idA ∈ HomC(A,A) for all A in C, i.e.

idB ◦ f = f = f ◦ idA.

Instead of writing f ∈ HomC(A,B) we write f : A → B, as many categories have
functions as maps. For brevity we sometimes write gf instead of g ◦ f . We will need
the category Set of sets with functions, the category Ab of abelian groups with group
homomorphisms and the category Top of topological spaces and continuous maps.

Definition 1.2. A functor F from a category C to a category D consists of a function
F0 from the objects of C to the objects of D and a function F1 from maps in C to maps
in D, such that

• for f : A→ B, we have F1(f) : F0(A)→ F0(B),

• F1(idA) = idF0(A) and

• F1(g ◦ f) = F1(g) ◦ F1(f).

We normally do not write the index of F0 or F1, instead we write F for both functions.

For a category C we denote the opposite category by Cop. The opposite category consists
of the same objects, but the maps and composition are reversed. A contravariant functor
F from C to D is a functor F : Cop → D.

Note that the composition of two functors is again a functor, and that we always have
an identity functor, sending each object to itself and each map to itself. This gives rise
to a category Cat of small categories. Note that we need some kind of smallness to
avoid set-theoretical issues. However we will not be interested in these set-theoretical
issues, and hence skip the definition of small.
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1.2. Isomorphisms. Given a category C and two objects A,B ∈ C we would like
to know when those objects are regarded as the same, according to the category. This
will be the case when there is an isomorphism between the two.

Definition 1.3. A map f : A→ B in a category C is an isomorphism if there is a map
g : B → A such that

f ◦ g = idB and g ◦ f = idA.

Isomorphisms in Ab are exactly the isomorphisms which we know, i.e. the group ho-
momorphisms which are both injective and surjective. For example the cyclic group Z4

and the Klein four-group V4 are not isomorphic in Ab, but if we regard only the sets Z4

and V4, then they are (because there is a bijection). So it is good to note that whether
two objects are isomorphic really depends on the category we are working in.

Note that an isomorphism between two categories is now also defined. Two categories
C and D are isomorphic if there are functors F and G such that FG = idD and
GF = idC.

1.3. Natural transformations.

Definition 1.4. Given two functors F,G : C→ D, a natural transformation φ from F
to G, is a family of maps φc : F (c)→ G(c) for c ∈ C, such that

F (c) G(c)

F (c′) G(c′)

φc

φc′

F (f) G(f)

commutes for any map f : c→ c′ and any objects c, c′ ∈ C.

For any two categories C and D we can form a category with functors F : C → D
as objects and natural transformations as maps. This category is called the functor
category and is denoted by DC.

This now also gives a notion of isomorphisms between functors. It can be easily seen that
an isomorphism between two functors is a natural transformation which is an isomor-
phism pointwise. Such a natural transformation is called a natural isomorphism.

For any category C we can define the Hom-functor. It assigns to two objects in C the
set of maps between them, i.e.

HomC(−,−) : Cop ×C→ Set.

We will show that it indeed defines a functor in the first argument, a similar proof works
for the second argument. Let f : A′ → A be a map in C and g ∈ HomC(A,B), then
g ◦ f ∈ HomC(A′, B). Hence the assignment g 7→ g ◦ f is a map from HomC(A,B) to
HomC(A′, B). Note that the direction of the map if reversed. Using associativity and
identity it is easily checked that this assignment is functorial.
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1.4. Equivalence. Recall that an isomorphism between categories C and D con-
sists of two functors F : C→ D and G : D→ C such that

FG = idD and idC = GF.

With the notion of isomorphisms between functors we can generalize this, and only
require a natural isomorphism instead of equality.

Definition 1.5. An equivalence between two categories C and D consists of two functors
F : C→ D and G : D→ C such that there are natural isomorphisms:

FG ∼= idD and idC
∼= GF.

This is denoted by C ' D.

Example 1.6. The category Setfin of finite sets is equivalent to the category Ordfin of
finite ordinals (with all functions). The former is uncountable and the latter is countable,
hence they clearly cannot be isomorphic. However, from a categorical point of view these
categories are very alike, which is precisely expressed by the equivalence.

1.5. Adjunctions.

Definition 1.7. An adjunction between two categories C and D consists of two functors
F : C→ D and G : D→ C together with a natural bijection

HomD(FX, Y ) ∼= HomC(X,GY ),

for any X ∈ C and Y ∈ D. The functor F is called the left adjoint and G the right
adjoint.

There are different equivalent descriptions of adjunctions. A particular nice one will be
recalled. For a proof of equivalence to the above definition we refer to books on category
theory such as the one of Mac Lane [ML98] or Awodey [Awo10].

Lemma 1.8. Given functors F : C → D, G : D → C then F is a left adjoint and G a
right adjoint if and only if there exists a natural transformation, called the unit

η : idC → GF.

such that for any map f : S → G(A) (in C), there is a unique map f : F (S) → A (in
D) such that G(f) ◦ η = f . I.e.:

S GF (S) F (S)

G(A) A

η

G(f)
f

f

Note that by considering the identity map id : G(A) → G(A) in C, we get a uniquely
determined map id : FG(A) → A. This map FG(A) → A is in fact natural in A, this
natural transformation is called the co-unit

ε : FG→ id.
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It can be shown that an equivalence F : C
'−−→ D is both a left and right adjoint.

We sketch the proof of F being a left adjoint. Clearly we already have the natural
transformation η : idC → GF . To construct f from f : S → G(A) we can apply
the functor F , to get F (S) → FG(A), using the other natural isomorphism we get
F (S)→ FG(A)→ A. We leave the details to the reader.

The first definition of adjunction is useful when dealing with maps, since it gives an
bijection between the Hom-sets. However the second definition is useful when proving
a certain construction is part of an adjunction, as shown in the following example.

Example 1.9. (Free abelian groups) There is an obvious functor U : Ab→ Set, which
sends an abelian group to its underlying set, forgetting the additional structure. It is
hence called a forgetful functor. This functor has a left adjoint Z[−] : Set → Ab given
by the free abelian group functor. For a set S define

Z[S] = {φ : S → Z | supp(φ) is finite},

where supp(φ) = {s ∈ S | φ(s) 6= 0}. The group structure on Z[S] is given by pointwise
addition. We can define a generator es ∈ Z[S] for every element s ∈ S as

es(t) =

{
1 if s = t

0 otherwise
.

One can think of elements of this abelian group as formal sums, namely by writing
φ ∈ Z[S] as φ =

∑
x∈supp(φ) φ(x)ex. In other words Z[S] consists of linear combinations

of elements in S. The functor Z[−] is defined on functions as follows. Let f : S → T be
a function, then define

Z[f ](φ) =
∑

x∈supp(φ)

φ(x)ef(x) for all φ ∈ Z[S].

It is left for the reader to check that this indeed gives a group homomorphism and that
the functor laws hold. There is a map η : S → UZ[S] given by

η(s) = es.

And given any map f : S → U(A) for any abelian group A, we can define

f(φ) =
∑

x∈supp(φ)

φ(x) · ef(x).

It is clear that U(f) ◦ η = f . We will leave the other details (naturality of η, f being a
group homomorphism, and uniqueness w.r.t. U(f) ◦ η = f) to the reader.

By the other description of adjunctions we have HomAb(Z[S], A) ∼= HomSet(S,U(A)),
which exactly tells us that we can define a group homomorphism from Z[S] to A by only
specifying it on the generators es, s ∈ S. This fact is used throughout this thesis.
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1.6. The Yoneda lemma. So far we have only encountered definitions from cate-
gory theory. However there is a very important lemma by Yoneda. This lemma gives a
nice way to construct certain natural transformations.

Definition 1.10. For any category C, we define a functor y : C→ SetCop
as follows

y(X) = HomC(−, X).

The functor y is called the Yoneda embedding.

We will denote the set of natural transformation between two functors F,G : C → D
as

Nat(F,G) = HomDC(F,G).

Lemma 1.11. (The Yoneda lemma) Given a functor F : C→ Set and any object C ∈ C
there is a bijection

Nat(y(C), F ) ∼= F (C),

which is natural in both F and C.

We will not provide a proof of this lemma, but we will give the function which can be
proven to be a natural bijection. Given a natural transformation φ ∈ Nat(y(C), F ), we
can consider the map φC : y(C)(C) → F (C). Note that the codomain already is the
right set, we only have to apply φC to the right object. The bijection is given by

φ 7→ φC(idC).

We will use this lemma when we discuss simplicial abelian groups.
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2. Chain Complexes

Definition 2.1. A (non-negative) chain complex of abelian groups C is a collection of
abelian groups Cn, n ∈ N, together with group homomorphisms ∂n : Cn → Cn−1, which
we call boundary operators, such that ∂n ◦ ∂n+1 = 0 for all n ∈ N>0.

Thus graphically a chain complex C can be depicted by the following diagram:

· · · C4 C3 C2 C1 C0
∂5 ∂4 ∂3 ∂2 ∂1

There are many variants to this notion. For example, there are also unbounded chain
complexes with an abelian group for each n ∈ Z instead of N. In this thesis we will only
need chain complexes in the sense of the definition above. Hence we will simply call them
chain complexes, instead of non-negative chain complexes. Other variants can be given
by taking a collection of R-modules instead of abelian groups. Of course not any kind
of mathematical object will suffice, because we need to be able to express ∂n ◦ ∂n+1 = 0,
so we need some kind of zero object. We will not need this kind of generality and stick
to abelian groups.

In order to organize these chain complexes in a category, we should define what the maps
are. The diagram above already gives an idea for this.

Definition 2.2. Let C and D be chain complexes, with boundary operators ∂Cn and ∂Dn
respectively. A chain map f : C → D consists of a family of group homomorphisms fn :
Cn → Dn, such that they commute with the boundary operators: fn◦∂Cn+1 = ∂Dn+1◦fn+1

for all n ∈ N, i.e. the following diagram commutes:

· · · C4 C3 C2 C1 C0

· · · D4 D3 D2 D1 D0

∂C5 ∂C4 ∂C3 ∂C2 ∂C1

∂D5 ∂D4 ∂D3 ∂D2 ∂D1

f4 f3 f2 f1 f0

Note that if we have two such chain maps f : C → D and g : D → E, then the level-wise
composition will give us a chain map g ◦ f : C → D. Also taking the identity function
in each degree, gives us a chain map id : C → C. In fact, this will form a category, we
will leave the details (the identity law and associativity) to the reader.

Definition 2.3. Ch(Ab) is the category of chain complexes of abelian groups with
chain maps.

Note that we will often drop the indices of the boundary operators, since it is often clear
in which degree we are working. The boundary operators give rise to certain subgroups,
because all groups are abelian, subgroups are normal subgroups.

Definition 2.4. Given a chain complex C we define the following subgroups:
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• the subgroup of n-cycles: Zn(C) = ker(∂n : Cn → Cn−1) E Cn,

• the subgroup of 0-cycles: Z0(C) = C0, and

• the subgroup of n-boundaries: Bn(C) = im(∂n+1 : Cn+1 → Cn) E Cn.

Lemma 2.5. Given a chain complex C we have for all n ∈ N:

Bn(C) E Zn(C).

Proof. It follows from ∂n ◦ ∂n+1 = 0 that im(∂ : Cn+1 → Cn) is a subset of
ker(∂ : Cn → Cn−1). Those are exactly the abelian groups Bn(C) and Zn(C), so
Bn(C) E Zn(C). �

In general there is no inclusion in the other direction. This defect can be measured by
a quotient and gives rise to the following definition. A motivation for this concept will
be provided in Section 2.2.

Definition 2.6. Given a chain complex C we define the n-th homology group Hn(C)
for each n ∈ N as:

Hn(C) = Zn(C)/Bn(C).

We will denote the class of an n-cycle x ∈ Zn(C) by [x] and refer to it as the homology
class of x.

Lemma 2.7. The n-th homology group gives a functor Hn : Ch(Ab) → Ab for each
n ∈ N.

Proof. Let f : C → D be a chain map and n ∈ N. First note that for x ∈ Zn(C)
we have ∂C(x) = 0, so ∂D(fn(x)) = 0, because the square on the right commutes:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

∂C ∂C ∂C ∂C

∂D ∂D ∂D ∂D
fn+1 fn fn−1

So there is an induced group homomorphism fZn : Zn(C) → Zn(D) (for n = 0 this
is trivial). Similarly there is an induced group homomorphism fBn : Bn(C) → Bn(D)
by considering the square on the left. Now define the map Hn(f) : [x] 7→ [fn(x)] for
x ∈ Zn(C), we now know that fn(x) is also a cycle, because of fZn . Furthermore it is well-
defined on classes, because of fBn . So indeed there is an induced group homomorphism
Hn(f) : Hn(C)→ Hn(D).

It remains to check that Hn preserves identities and compositions. By writing out the
definition we see Hn(id)([x]) = [id(x)] = [x] = id[x], and:

Hn(g ◦ f)([x]) = [gn(fn(x))] = Hn(g)([fn(x)]) = Hn(g) ◦Hn(f)([x]).

�
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2.1. A note on abelian categories. The category Ch(Ab) in fact is an abelian
category. We will only need a very specific property of this fact later on, and hence we
will only prove this single fact. For the precise definition of an abelian category we refer
to the book of Rotman about homological algebra [Rot09, Chapter 5.5]. The notion of
an abelian category is interesting if one wants to consider chain complexes over other
objects than abelian groups, because Ch(C) will be an abelian category whenever C is
an abelian category.1 The property we want to use later on is the following.

Definition 2.8. A category C is preadditive if the set of maps between two objects is
an abelian group, such that composition is bilinear. In other words: the Hom-functor
has as its codomain Ab:

HomC(−,−) : Cop ×C→ Ab.

To see why functoriality is the same as bilinear composition, recall that the Hom-functor
in the first variable uses precomposition on maps, and postcomposition in the second
variable. By functoriality this should be a group homomorphism, written out this means:
h ◦ (g+ f) = h ◦ g+ h ◦ f for postcomposition, in other words postcomposition is linear.
Similar for precomposition. Together this gives bilinearity of − ◦ −.

Clearly the category Ab is preadditive, since we can add group homomorphisms point-
wise. Furthermore, postcomposition is linear h◦ (g+f)(x) = h(g(x)+f(x)) = h(g(x))+
h(f(x)) = (h ◦ g + h ◦ f)(x), and similarly precomposition is linear. Using this we can
proof the following.

Lemma 2.9. The category Ch(Ab) is a preadditive category.

Proof. We can add chain maps level-wise. Given two chain maps f, g : C → D, we
define f + g as:

(f + g)n = fn + gn,

where we use the fact that Ab is preadditive. Note that f + g is also a chain map,
since it commutes with the boundary operators. The bilinearity of composition follows
level-wise from the fact that Ab is preadditive. �

Of course given two preadditive categories C and D, not every functor will preserve this
extra structure.

Definition 2.10. Let C and D be two preadditive categories. A functor F : C→ D is
said to be additive if it preserves addition of maps, i.e.:

F (f + g) = F (f) + F (g).

In other words the functor F induces a group homomorphism: F : HomC(A,B) →
HomD(FA,FB).

1However, this generality might not be so interesting from a categorical standpoint, as there is a fully
faithful (exact) functor F : C → Ab for any (small) abelian category C, called the Mitchell embedding
[Rot09]. This gives a way to proof categorical statements in C by proving the statement in Ab.
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2.2. The singular chain complex. In order to see why we are interested in the
construction of homology groups, we will look at an example from algebraic topology.
We will see that homology gives a nice invariant for spaces. We will construct a chain
complex for any topological space. In this section we will not be very precise, as it will
only act as a motivation. However the intuition might be very useful later on, and so
pictures are provided to give meaning to this construction.

Definition 2.11. The topological n-simplex ∆n, n ∈ N, is the set

∆n = {(x0, x1, . . . , xn) ∈ Rn+1 | xi ≥ 0 and x0 + . . .+ xn = 1} ⊆ Rn+1

endowed with the subspace topology.

In particular ∆0 is simply a point, ∆1 a line and ∆2 a solid triangle. There are nice
inclusions ∆n ↪→ ∆n+1 which we need. For any n ∈ N we define:

Definition 2.12. For i ∈ {0, . . . , n+ 1} the i-th face map δi : ∆n ↪→ ∆n+1 is defined as

δi(x0, . . . , xn) = (x0, . . . , xi−1, 0, xi, . . . , xn) for all x ∈ ∆n.

Given a space X, we will be interested in continuous maps σ : ∆n → X, such a map is
called a singular n-simplex. Note that if we have a (n + 1)-simplex σ : ∆n+1 → X we
can precompose with a face map to get a n-simplex σ ◦ δi : ∆n → X. This is illustrated
in Figure 1 for n = 1.

Figure 1. The 2-simplex σ gives rise to a 1-simplex σ ◦ δ1

From the picture it is clear that the assignment σ 7→ σ ◦ δi gives one of the faces of
the boundary of σ. We would like to be able to formally add these different σ ◦ δi in
order to assign to σ “its complete boundary”. This is achieved by passing to free abelian
groups as defined in the previous section. However we should note that the topological
n-simplex is in some way oriented or ordered, which is preserved by the face maps.

Definition 2.13. For a topological space X we define the n-th singular chain group
Cn(X) by

Cn(X) = Z[HomTop(∆n, X)].

The singular boundary operator ∂ : Cn+1(X)→ Cn(X) is defined on generators as

∂(σ) = σ ◦ δ0 − σ ◦ δ1 + . . .+ (−1)n+1σ ◦ δn+1.
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The elements in Cn(X) are called singular n-chains and are formal sums of singular
n-simplices. Since these groups are free, we can define any group homomorphism by
defining it on the generators, the n-simplices.

Some geometric intuition for the boundary operator is provided by Figure 2. In this
picture we see that the boundary of a 1-simplex is simply its end-point minus the starting-
point. We see that the boundary of a 2-simplex is an alternating sum of three 1-simplices.
The alternating sum ensures that the end-points and starting-points of the resulting 1-
chain will cancel out when applying ∂ again. So in the degrees 1 and 2 we see that ∂ is
nicely behaved. We will now claim that this construction indeed gives a chain complex,
without proof.

Figure 2. The boundary of a 2-simplex, and the boundary of a 1-simplex

The above construction defines a functor C : Top → Ch(Ab) (we will not prove this)
which sends a space X to its singular chain complex C(X). So the terminology of
Definition 2.4 applies to these chain complexes. Composing this with the functor Hn :
Ch(Ab)→ Ab gives rise to the following definition.

Definition 2.14. The n-th singular homology group of a space X is defined as

Hsing
n (X) = Hn(C(X)).

With Figure 3 we indicate what Hsing
1 measures. In the first space X we see a 1-cycle

σ1 − σ2 + σ3 which is also a boundary, because we can define a map τ : ∆2 → X such

that ∂(τ) = σ1−σ2 +σ3, hence we conclude that 0 = [σ1−σ2 +σ3] ∈ Hsing
1 (X). So this

1-cycle is not interesting in homology. In the space X ′ however there is a hole, which

prevents a 2-simplex like τ te exist, hence 0 6= [σ1− σ2 + σ3] ∈ Hsing
1 (X ′). This example

shows that in some sense this functor is capable of detecting holes in a space.

(a) The 1-cycle is in fact a boundary.
(b) The hole in X ′ prevents the 1-cycle to be a
boundary.

Figure 3. Two different spaces in which we consider a 1-chain σ1−σ2 +
σ3, this 1-chain is in fact a 1-cycle, because the end-points and starting-
points cancel out.
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A direct consequence of being a functor is that homeomorphic spaces have isomorphic
singular homology groups. There is even a stronger statement which tells us that ho-
motopy equivalent spaces have isomorphic homology groups. So if one is interested in
homotopy of a space, then homology already gives some information.

In the remainder of this section we will give the homology groups of some basic spaces.
For most spaces it is hard to calculate the homology groups from the definitions above.
One generally proves these results by using theorems from algebraic topology or homo-
logical algebra, which are beyond the scope of this thesis. The first example can be
calculated from the definitions above, however the proof is not included as the example
is only included as a motivation.

Example 2.15. The homology of the one-point space ∗ is given by

Hsing
n (∗) ∼=

{
Z if n = 0

0 otherwise
.

Let Sk = {x ∈ Rn+1 | ||x|| = 1} be the k-sphere. For example, S0 consists only of two
points and S1 is the usual circle.

Example 2.16. The homology of Sk for k > 0 is given by

Hsing
n (Sk) ∼=

{
Z if n = 0 or n = k

0 otherwise
.

For S0 the homology group H0(S0) is isomorphic to Z⊕Z, and all other homology groups
are trivial.

We can use the latter example to prove a fact about Rn quite easily (n > 0). Note that
Rn − {0} is homotopy equivalent to Sn−1, so their homology groups are the same. As a
consequence Rn − {0} has the same homology groups as Rm − {0}, only if n = m. Now
if Rn is homeomorphic to Rm, then also Rn − {0} ∼= Rm − {0}, so this only happens if
n = m. This result is known as the invariance of dimension.



14

3. Simplicial Abelian Groups

Before defining simplicial abelian groups, we will first discuss the more general notion of
simplicial sets. There are generally two definitions of simplicial sets, an abstract one and
a very explicit one. We will start with the abstract one, luckily it can still be visualised
in pictures, then we will derive the explicit definition. The reader who is interested in
how these notions are developed, should consider reading the introduction by Friedman
[Fri12], which also gives nice illustrations.

3.1. Abstract definition.

Definition 3.1. We define a category ∆, where the objects are the finite ordinals
[n] = {0 < · · · < n} for n ∈ N and maps are monotone functions: Hom∆([n], [m]) =
{f : [n]→ [m] | f(i) ≤ f(j) for all i < j}.

The category ∆ is sometimes referred to as the category of finite ordinals or the cosim-
plicial index category. There are two special kinds of maps in ∆, the so called face maps
and degeneracy maps. The i-th face maps δi : [n − 1] → [n] is the unique injective
monotone function which omits i. More precisely, it is defined for all n ∈ N>0 as (note
that we do not explicitly denote n in this notation)

δi : [n− 1]→ [n], k 7→

{
k if k < i,

k + 1 if k ≥ i,
0 ≤ i ≤ n.

The i-th degeneracy map σi : [n + 1] → [n] is the unique surjective monotone function
which hits i twice. More precisely it is defined for all n ∈ N as

σi : [n+ 1]→ [n], k 7→

{
k if k ≤ i,
k − 1 if k > i,

0 ≤ i ≤ n.

The nice things about these maps is that every map in ∆ can be decomposed to a
composition of such maps. So in a sense, these are all the maps we need to consider.

Lemma 3.2. (Epi-mono factorization) Let η : [m]→ [n] be a map in ∆. Then η can be
uniquely decomposed as

η = δia · · · δi1σjb · · ·σj1 ,
such that 0 ≤ jb < · · · < j1 < m and 0 ≤ i1 < · · · < ia ≤ n.

This is called the epi-mono factorization, because it factors any map η into a surjective
part (σjb · · ·σj1) and an injective part (δia · · · δi1). In a diagram:

[m] [n]

[k]

η

σjb · · ·σj1 δia · · · δi1
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Proof. We start with the existence. Consider the set S = {k ∈ [m − 1] | η(k) =
η(k+1)}. These are precisely the elements which are hit twice, now let S = {j1, . . . , j|S|}
with 0 ≤ j|S| < · · · < j1 < m. This gives rise to a surjection σ = σjb · · ·σj1 : [m] �
[m− |S|].

Similarly consider T = {k ∈ [m − |S|] | k 6∈ η[m]}. These are precisely the elements
which are omitted, now let T = {i1, . . . , i|T |} with 0 ≤ i1 < · · · < i|T | ≤ n. This gives an
injection δ = δia · · · δi1 : [m− |S|] ↪→ [n]. Now we see that η = δσ.

Now for uniqueness, suppose also η = δi′
a′
· · · δi′1σj′b′ · · ·σj′1 such that 0 ≤ j′b′ < · · · < j′1 <

m and 0 ≤ i′1 < · · · < i′a′ ≤ n. It is immediately clear that b = b′ must hold by counting
the elements which are hit twice, and therefore also a = a′. Note that η(j′k) = η(j′k+1),
because the sequences are ordered in the same way, this means jk = j′k for all k. Similarly
ik = i′k for all k. �

We can now depict the category ∆ as in Figure 4. Note that the face and degeneracy
maps are not unrelated. We will make the exact relations precise later.

Figure 4. The category ∆ with face and degeneracy maps.

Although this is a very abstract definition, a more geometric intuition can be given. In
∆ we can regard [n] as an abstract version of the n-simplex ∆n. The face maps δi are
then exactly maps which point out how we can embed [n− 1] in [n]. This is visualized
in Figure 5. This picture shows the images of the face maps, for example the image
of δ3 from [2] to [3] is the set {0, 1, 2}, which corresponds to the bottom face of the
tetrahedron. The degeneracy maps are harder to visualize, one can think of them as
“collapsing” maps. For example, this collapses a triangle into a line.

This category ∆ will act as a prototype for these kind of geometric structures in other
categories. This leads to the following definition.

Definition 3.3. A simplicial set X is a functor

X : ∆op → Set.

(Or equivalently a contravariant functor X : ∆→ Set.)

Figure 5. The category ∆ with the face maps shown in a geometric way.
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Figure 6. A simplicial set.

The category sSet of all simplicial sets is the functor category Set∆op
, where morphisms

are natural transformations. Because the face and degeneracy maps give all the maps in
∆ it is sufficient to define images of δi and σi in order to define a functor X : ∆op → Set,
keeping in mind that these should satisfy some relations which we will discuss next.
Hence we can depict a simplicial set as done in Figure 6. Comparing this to Figure 4 we
see that the arrows are reversed, because X is a contravariant functor.

3.2. Explicit definition. Of course the maps δi and σi in ∆ satisfy certain rela-
tions, these are the so called cosimplicial identities.

Lemma 3.4. The face and degeneracy maps in ∆ satisfy the cosimplicial identities:

δjδi = δiδj−1, if i < j,(1)

σjδi = δiσj−1, if i < j,(2)

σjδj = σjδj+1 = id,(3)

σjδi = δi−1σj , if i > j + 1,(4)

σjσi = σiσj+1, if i ≤ j.(5)

Proof. This follows immediately from the definitions. �

Note that these cosimplicial identities are “purely categorical”, i.e. they only use com-
positions and identity maps. Because a simplicial set X is a contravariant functor, dual
versions of these equations hold in its image. For example, the first equation corresponds
to X(δi)X(δj) = X(δj−1)X(δi) for i < j. This can be used for an explicit definition of
simplicial sets. In this definition a simplicial set X consists of a collection of sets Xn

together with face and degeneracy maps. More precisely:

Lemma 3.5. A simplicial set X is equivalently specified by a collection sets Xn, n ∈ N,
together with functions di : Xn → Xn−1 and si : Xn → Xn+1 for 0 ≤ i ≤ n and n ∈ N,
such that the simplicial identities hold:

didj = dj−1di, if i < j,(6)

disj = sj−1di, if i < j,(7)

djsj = dj+1sj = id,(8)

disj = sjdi−1, if i > j + 1,(9)

sisj = sj+1si, if i ≤ j.(10)

It is already indicated that a functor from ∆op to Set is determined when the images
for the face and degeneracy maps in ∆ are provided. So this gives a way of restoring
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the definition from this specification. Conversely, we can apply functoriality to obtain
this specification from the definition. We will not give the proof in more detail. From
now on we will use the following notation for a simplicial set X:

Xn = X([n]), si = X(σi) and di = X(δi).

For any other map β : [n]→ [p] we will denote the induced map by β∗ : Xp → Xn.

When using a simplicial set to construct another object, it is often handy to use this
second definition, as it gives you a very concrete objects to work with. On the other
hand, constructing this might be hard (as you would need to provide a lot of details), in
this case we will often use the more abstract definition.

Note that because of the third equation, the degeneracy maps si are injective. This
means that in the set Xn+1 there are always “copies” of elements of Xn. In a way these
elements are not interesting, hence we call them degenerate.

Definition 3.6. An element x ∈ Xn+1 is degenerate if it lies in the image of si : Xn →
Xn+1 for some i, otherwise it is called non-degenerate.

Lemma 3.7. We can write any x ∈ Xn uniquely as x = β∗y with β : [n] � [m] a
surjective map and y ∈ Xm non-degenerate.

Proof. We will proof the existence by induction over n. For n = 0 the statement is
trivial, since all elements in X0 are non-degenerate. Assume the statement is proven for
n. Let x ∈ Xn+1. Clearly if x itself is non-degenerate, we can write x = id∗x. Otherwise
it is of the form x = six

′ for some x′ ∈ Xn and i. The induction hypothesis tells us that
we can write x′ = β∗y for some surjection β : [n]� [m] and y ∈ Xm non-degenerate. So
x = siβ

∗y = (βσi)
∗y.

For uniqueness, assume x = β∗y = γ∗z with β : [n] � [m], γ : [n] � [m′] and y ∈
Xm, z ∈ Xm′ non-degenerate. Because β is surjective there is an α : [m] → [n] such
that βα = id and hence y = α∗β∗y = α∗γ∗z = (γα)∗z. By the epi-mon factorization
(Lemma 3.2) we can write γα = δia · · · δi1σjb · · ·σj1 , using that y is non-degenerate we
know that γα is injective. So we have γα : [m] ↪→ [m′]. Because of symmetry (of y and
z) we also have some map [m′] ↪→ [m], so m = m′. So γα is also surjective, hence the
identity function, thus y = z, meaning that the non-degenerate m-simplex y is unique.

Now assume x = β∗y = γ∗y with γ, β : [n] � [m] such that β 6= γ, and y ∈ Xm non-
degenerate. Then we can find an α : [m] → [n] such that βα = id and γα 6= id. With
the epi-mono factorization write γα = δia · · · δi1σjb · · ·σj1 , then by functoriality of X

y = α∗β∗y = α∗γ∗y = sj1 · · · sjbdi1 · · · diay.
Note that y was non-degenerate, so sj1 · · · sjb = id, hence di1 · · · dia = id. So γα = id,
which gives a contradiction. So β = γ, meaning that the surjection β is also unique. �

3.3. The standard n-simplex. Recall that for any category C we have the Hom-
functor HomC(−,−) : Cop ×C→ Set. We can fix an object C ∈ C and get a functor
HomC(−, C) : Cop → Set. In our case we can get the following simplicial sets in this
way:
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Definition 3.8. The standard n-simplex ∆[n] ∈ sSet is given by

∆[n] = Hom∆(−, [n]) : ∆op → Set.

Note that ∆[−] : ∆ → sSet is exactly the Yoneda embedding. So a m-simplex in ∆[n]
is nothing more than a monotone function [m] → [n]. In a moment we will see why
the Yoneda lemma is useful to us, but let us first describe which functions are non-
degenerate. Recall that a simplex is degenerate if it lies the image of si for some i. In
the simplicial set ∆[n] the degeneracy maps si are given by precomposing with σi (by
definition of the Hom-functor).

Lemma 3.9. The non-degenerate m-simplices in ∆[n] are precisely injective monotone
functions [m] ↪→ [n].

Proof. Given a m-simplex x ∈ ∆[n]m, using the epi-mono factorization we can
write it as x = δσ : [m] → [n], where δ is injective and σ surjective. It is now easily
seen that x is degenerate if and only if σ 6= id. In other words a m-simplex x ∈ ∆[n]m
is non-degenerate if and only if x : [m] → [n] is injective. Note that for m > n no such
injective monotone functions exist and for m = n there is a unique one, namely id[n]. �

Example 3.10. We will compute how ∆[0] looks like. Note that [0] is an one-element
set, so for any set S, there is only one function ∗ : S → [0]. Hence ∆[0]n = {∗} for all
n and the face and degeneracy maps are necessarily the identity maps id : {∗} → {∗}.
Thus, ∆[0] looks like

∆[0] := {∗} {∗} {∗} · · · .

Note that the only non-degenerate simplex is the unique 0-simplex.

Example 3.11. ∆[1] is a bit more interesting, but still not too complicated. We will
describe the first three sets ∆[1]0, ∆[1]1 and ∆[1]2. We can use the fact that any
monotone function f : [n] → [m] is a composition of first applying degeneracy maps,

and then face maps, i.e.: f : [n]
σi0 ···σiM−−−−−−−→ [k]

δj0 ···δjN−−−−−−→ [m], where k ≤ m,n.

For ∆[1]0 we have to consider maps from [0] to [1], we cannot first apply degeneracy
maps (there is no object [−1]). So this leaves us with the face maps: ∆[1]0 = {δ0, δ1}.
For ∆[1]1 we of course have the identity function and two functions δ0σ0, δ1σ0. Now
∆[1]2 are the maps from [2] to [1].

We will compute the two face maps d0 and d1 from ∆[1]1 to ∆[1]0. Recall that the Hom-
functor in the first argument (the contravariant argument) works with precomposition.
So this gives

d0(id) = idδ0 = δ0

d0(δ0σ0) = δ0σ0δ0 = δ0

d0(δ1σ0) = δ0σ0δ0 = δ1.
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Where we in the first calculation used the identity law. In the second and third line we
used the third simplicial equation, asserting that σ0δ0 = id. Similarly we can calculate
the face map d1:

d1(id) = idδ1 = δ1

d1(δ0σ0) = δ0σ0δ1 = δ0

d1(δ1σ0) = δ0σ0δ1 = δ1.

∆[1] := {δ0, δ1} {δ0σ0, id, δ1σ0} · · · .

In this simplicial set there are three non-degenerate simplices. There is id ∈ ∆[1]1,
which clearly is non-degenerate, and the two 0-simplices δ0 and δ1. One can think of
this simplicial set as a line (the non-degenerate 1-simplex) with its endpoints (the two
0-simplices).

3.4. Simplicial objects in arbitrary categories. Of course the definition of
simplicial set can easily be generalized to other categories. For any category C we
can consider the functor category sC = C∆op

. In this thesis we are interested in the
category of simplicial abelian groups:

sAb = Ab∆op
.

So a simplicial abelian group A is a collection of abelian groups An, together with face
and degeneracy maps, which in this case means group homomorphisms di and si such
that the simplicial equations hold.

Note that the set of natural transformations between two simplicial abelian groups A
and B is also an abelian group. The proof that sAb is a preadditive category is very
similar to the proof we saw in Section 2. For two natural transformations f, g : A→ B
we simply define f + g pointwise by (f + g)n = fn + gn and it is easily checked that this
is a natural transformation.

As we are interested in simplicial abelian groups, it would be nice to obtain simplicial
abelian groups associated to the standard n-simplices. We have seen how to make an
abelian group out of any set using the free abelian group functor. We can use this functor
Z[−] : Set → Ab to induce a functor Z∗[−] : sSet → sAb as shown in the following
diagram. This construction obviously defines a functor Z∗[−] : sSet→ sAb. Similarly,

∆op Set

Ab

X

Z[−]
Z∗[X]

Figure 7. The simplicial set X can be made into a simplicial abelian
group Z∗[X] by postcomposing with Z[−].
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postcomposition with the forgetful functor U : Ab→ Set gives rise to a forgetful functor
U∗ : sAb→ sSet. Thus in formulas we have

Z∗[X]n = Z[Xn] and U∗(A)n = U(An).

This justifies that we may drop this extra decoration (∗) and write Z[−] (resp. U) instead
of Z∗[−] (resp. U∗).

Lemma 3.12. The functor Z[−] : sSet → sAb is a left adjoint, with U : sAb → sSet
as right adjoint.

As this is a purely categorical question (it even works for arbitrary functor categories),
only a sketch of the proof is given. First note that by the fact that Z and U already form
an adjunction, and if we are given a natural transformation f : X → UA of simplicial
sets we get the following diagram for each n ∈ N:

Xn UZ[X]n Z[Xn]

U(An) An

ηXn

U(fn)
fn

fn

Then use naturality of η (in Xn, thus in particular in n) to extend this to η : X →
UZ[X]. The uniqueness of the maps fn will assure that we get a natural transformation
f : Z[X]→ A. The reader is invited to check the details.

Example 3.13. We can apply this to the standard n-simplex ∆[1]. This gives ∆[1]0 ∼=
Z2, since ∆[1]0 has two elements, and Z∗[∆[1]]1 ∼= Z3, where the isomorphisms are taken
such that

δ0
∼=7−−→ (1, 0),

δ1
∼=7−−→ (0, 1),

δ0σ0
∼=7−−→ (1, 0, 0),

id
∼=7−−→ (0, 1, 0),

δ1σ0
∼=7−−→ (0, 0, 1).

The face maps from Z[∆[1]]1 to Z[∆[1]]0 under these isomorphisms are then given by

d0(x, y, z) = (x+ y, z),

d1(x, y, z) = (x, y + z).

3.5. The Yoneda lemma. Recall the statement of the Yoneda lemma from Sec-
tion 1. In our case we consider functors X : ∆op → Set and objects [n]. So this gives
us a natural bijection

HomsSet(∆[n], X) ∼= Xn

telling us that we can regard n-simplices in X as maps from ∆[n] to X. This also extends
to the case of simplicial abelian groups.
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Lemma 3.14. (The additive Yoneda lemma) Let A be a simplicial abelian group. Then
there is a group isomorphism

HomsAb(Z[∆[n]], A) ∼= An,

which is natural in A and [n].

Proof. By using the (non-additive) Yoneda lemma and the fact that Z is a left
adjoint, we already have a natural bijection:

HomsAb(Z[∆[n]], A) ∼= HomsSet(∆[n], U(A)) ∼= U(A)n = An.

The only thing that we need to check is that this bijection preserves the group structure.
Recall that this bijection from HomsAb(Z[∆[n]], A) to An is given by (where id = id[n]

is a generator in Z[∆[n]])

φ(f) = fn(id) ∈ Xn for f : ∆[n]→ X.

Now let A be a simplicial abelian group and f, g : Z∆[n]→ A maps. Then we compute

φ(f) + φ(g) = fn(id) + gn(id) = (fn + gn)(id) = (f + g)n(id) = φ(f + g),

where we regard id ∈ ∆[n] as an element id ∈ Z∆[n], we can do so by the unit of
the adjunction. So this bijection is also a group homomorphism, hence we have an
isomorphism HomsAb(Z[∆[n]], A) ∼= An of abelian groups. �
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4. The Dold-Kan correspondence

Comparing chain complexes and simplicial abelian groups, one sees a certain similarity.
Both concepts are defined as sequences of abelian groups with certain structure maps.
At first sight simplicial abelian groups seem to have a richer structure. There are many
face maps as opposed to only a single boundary operator. Nevertheless, as we will show
in this section, these two concepts give rise to equivalent categories.

4.1. Unnormalized chain complex. Given a simplicial abelian group A, we have
a family of abelian groups An. For every n > 0 we define a group homomorphism

∂n = d0 − d1 + . . .+ (−1)ndn : An → An−1.

Lemma 4.1. Using An as the family of abelian groups and the maps ∂n as boundary
operators gives a chain complex.

Proof. We already have a collection of abelian groups together with maps, so the
only thing to prove is ∂n−1 ◦ ∂n = 0. This can be done with a calculation.

∂n−1 ◦ ∂n =
n−1∑
i=0

n∑
j=0

(−1)i+jdi ◦ dj

(1)
=

n−1∑
i=0

i∑
j=0

(−1)i+jdi ◦ dj +

n−1∑
i=0

n∑
j=i+1

(−1)i+jdi ◦ dj

(2)
=

n−1∑
i=0

i∑
j=0

(−1)i+jdi ◦ dj +

n−1∑
i=0

n∑
j=i+1

(−1)i+jdj−1 ◦ di

(3)
=

n−1∑
i=0

i∑
j=0

(−1)i+jdi ◦ dj −
n−1∑
i=0

n−1∑
j=i

(−1)i+jdj ◦ di

=
n−1∑
i=0

i∑
j=0

(−1)i+jdi ◦ dj −
n−1∑
i=0

i∑
j=0

(−1)i+jdi ◦ dj = 0

In this calculation we did the following. We split the inner sum in two halves (1) and
we use the simplicial equations on the second sum (2). Then we do a shift of indices (3).
By interchanging the roles of i and j in the second sum, we have two equal sums which
cancel out. So indeed this is a chain complex. �

Thus, associated to a simplicial abelian group A we obtain a chain complex M(A) with
M(A)n = An and the boundary operators as above. Following the book [GJ99] we will
call the chain complex M(X) the Moore complex or unnormalized chain complex of X.
This construction defines a functor

M : sAb→ Ch(Ab)
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by assigning M(f)n = fn for a natural transformation f : A→ B. It follows from a nice
calculation that M(f) is indeed a chain map:

fn−1 ◦ ∂ = fn−1 ◦ (d0 − d1 + . . .+ (−1)ndn)

= fn−1 ◦ d0 − fn−1 ◦ d1 + . . .+ (−1)nfn−1 ◦ dn
(1)
= d0 ◦ fn − d1 ◦ fn + . . .+ (−1)ndn ◦ fn
= (d0 − d1 + . . .+ (−1)ndn) ◦ fn = ∂ ◦ fn,

where we used naturality of f in step (1). This functor is in fact already used in the
construction of the singular chain complex, where we defined the boundary operators
(on generators) as ∂(σ) = σ ◦ d0 − σ ◦ d1 + . . .+ (−1)n+1σ ◦ dn+1. We will briefly come
back to this in Section 5.

Let us investigate whether this functor M can be part of an equivalence. If M would
be part of an equivalence, it would be essentially surjective, meaning that for any chain
complex C there exists a simplicial abelian group A such that M(A) ∼= C. For example
take the following chain complex

C = . . .→ 0→ 0→ Z.
If we want M to be essentially surjective, there should exist a simplicial abelian group
A with A0

∼= Z and A0
∼= 0. Recall that the degeneracy maps are injective. This

contradicts as there is no injective map Z ↪→ 0. So it is easily seen that M cannot be
part of an equivalence, although it is a nice functor.

4.2. Normalized chain complex. To repair this defect we should be more careful.
Given a simplicial abelian group, simply taking the same collection for our chain complex
will not work. Instead we are after some “smaller” abelian groups, and in some cases
the abelian groups should completely vanish (as in the example above).

Given a simplicial abelian group A, we define abelian groups N(A)n as

N(A)n =

n⋂
i=1

ker(di : An → An−1), n > 0

N(A)0 = A0.

Now define group homomorphisms ∂ : N(A)n → N(A)n−1 as

∂ = d0|N(A)n .

Lemma 4.2. The function ∂ is well-defined. Furthermore ∂ ◦ ∂ = 0.

Proof. Let x ∈ N(A)n, then di∂(x) = did0(x) = d0di+1(x) = d0(0) = 0 for all
i < n. So indeed ∂(x) ∈ N(A)n−1, because in particular it holds for i > 0. Using this
calculation for i = 0 shows that ∂ ◦∂ = 0. This shows that N(A) is a chain complex. �

The chain complex N(A) is called the normalized chain complex of A.

Lemma 4.3. The above construction defines a functor N : sAb → Ch(Ab). Further-
more N is additive.
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Proof. Given a map f : A → B of simplicial abelian groups, we consider the
restrictions

fn|N(A)n : N(A)n → Bn.

Because fn commutes with the face maps we get

di(fn(x)) = fn−1(di(x)) = 0,

for i > 0 and x ∈ N(A)n. So the restriction also restricts the codomain, in other
words fn|N(A)n : N(A)n → N(B)n is well-defined. Furthermore it commutes with the
boundary operators, since f itself commutes with all face maps. This gives functoriality
N(f) : N(A)→ N(B).

Let f, g : A→ B be two maps, then we prove additivity by

N(f + g) = (f + g)|N(A) = f |N(A) + g|N(A) = N(f) +N(g).

�

Example 4.4. We will look at the normalized chain complex of Z[∆[0]]. Recall that it
looks like

Z[∆[0]] := Z Z Z · · · .

where all face and degeneracy maps are identity maps. Clearly the kernel of id is
the trivial group. So N(Z[∆[0]])i = 0 for all i > 0. In degree zero we are left with
N(Z[∆[0]])0 = Z. So we can depict the normalized chain complex by

N(Z[∆[0]]) = · · · → 0→ 0→ Z.

So in this example we see that the normalized chain complex is really better behaved
than the unnormalized chain complex given by M(Z[∆[0]]).

To see what N exactly does there are some useful lemmas. These lemmas can also be
found in [Lam68, Chapter VIII 1-2], but in this thesis more detail is provided. Some
corollaries are provided to give some intuition, or so summarize the lemmas, these results
can also be found in [Wei94, Chapter 8.2-4]. For the following lemmas let X ∈ sAb
be an arbitrary simplicial abelian group and n ∈ N. For these lemmas we will need the
subgroups Dn(X) ⊆ Xn of degenerate simplices, defined as:

Dn(X) =
n∑
i=0

si(Xn−1).

Lemma 4.5. For all x ∈ Xn we have:

x = b+ c,

where b ∈ N(X)n and c ∈ Dn(X).

Proof. Define the subgroup P kn = {x ∈ Xn | dix = 0 for all i > k}. Note that by
definition we have

N(X)n = P 0
n ⊆ P 1

n ⊆ . . . ⊆ Pn−1
n ⊆ Pnn = Xn.
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We will prove with induction that for any k ≤ n we can write x ∈ Xn as x = b+ c, with
b ∈ P kn and c ∈ Dn(X). For k = n the statement is clear, because we can simply write
x = x, knowing that x ∈ Pnn = Xn.

Assume the statement holds for k > 0, we will prove it for k − 1. So for any x ∈ Xn we
have x = b+ c, with b ∈ P kn and c ∈ Dn(X). Now consider b′ = b− sk−1dkb. Now clearly
for all i > k we have dib

′ = 0. For k itself we can calculate

dk(b
′) = dk(b− sk−1dkb) = dkb− dksk−1dkb = dkb− dkb = 0,

where we used the equality dksk−1 = id. So b′ ∈ P k−1
n . Furthermore we can define

c′ = sk−1dkb+ c, for which it is clear that c′ ∈ Dn(X). Finally conclude that

x = b+ c = b− sk−1dkb+ sk−1dkb+ c = b′ + c′,

with b′ ∈ P k−1
n and c′ ∈ Dn(X).

Doing this inductively gives us x = b+ c, with b ∈ P 0
n = N(X)n and c ∈ Dn(X). �

Lemma 4.6. For all x ∈ Xn, if six ∈ N(X)n+1, then x = 0.

Proof. Using that six ∈ N(X)n+1 means 0 = dk+1six for any k ≥ 0 and by using
using the simplicial identity: di+1si = id, we can conclude x = di+1six = 0. �

The first lemma tells us that every n-simplex in X can be decomposed as a sum of
something in N(X) and a degenerate n-simplex. The latter lemma assures that there
are no degenerate n-simplices in N(X). So this gives us:

Corollary 4.7. Xn = N(X)n ⊕Dn(X)

We can extend the above lemmas to a more general statement.

Lemma 4.8. For all x ∈ Xn we can write x as

x =
∑
β

β∗(xβ),

for certain xβ ∈ N(X)p, where β ranges over all surjective functions β : [n]� [p].

Proof. We will proof this using induction on n. For n = 0 the statement is clear
because N(X)0 = X0.

Assume the statement is proven for n. Let x ∈ Xn+1, then from Lemma 4.5 we see
x = b + c. Note that c ∈ Dn(X), in other words c =

∑n−1
i=0 sici, with ci ∈ Xn. So with

the induction hypothesis, we can write these as ci =
∑

β β
∗ci,β, where the sum quantifies

over β : [n] � [p]. Now b is already in N(X)n+1, so we can set xid = b, to obtain the
conclusion. �

Lemma 4.9. Let β : [n] � [m] and γ : [n] � [m′] be two maps such that β 6= γ. Then
we have β∗(N(X))m ∩ γ∗(N(X))m′ = 0.
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Proof. Note that N(X)i only contains non-degenerate i-simplices (and 0). For
x ∈ β∗(N(X))p∩γ∗(N(X))q we have x = β∗y = γ∗y′, where y and y′ are non-degenerate.
By Lemma 3.7 we know that every n-simplex is uniquely determined by a non-degenerate
simplex and a surjective map. For x 6= 0 this gives a contradiction. �

Again the former lemma of these two lemmas proves the existence of a decomposition
and the latter shows the uniqueness. So combining these gives:

Corollary 4.10. For all x ∈ Xn we can write x =
∑

β β
∗(xβ) in a unique way.

And by considering Xn as a whole we get:

Corollary 4.11. Xn =
⊕

[n]�[p]N(X)p.

Using Corollary 4.10 we can prove a nice categorical fact about N , which we will use
later on.

Lemma 4.12. The functor N is fully faithful, i.e.

N : HomsAb(A,B) ∼= HomCh(Ab)(N(A), N(B)) A,B ∈ sAb.

Proof. First we prove that N is injective on maps. Let f : A → B and assume
N(f) = 0, for x ∈ An we know x =

∑
β β
∗xβ, so

f(x) = f(
∑

β β
∗(xβ))

=
∑

β f(β∗(xβ))

=
∑

β β
∗(f(xβ))

=
∑

β β
∗(N(f)(xβ)) = 0,

where we used naturality of f in the second step, and the fact that xβ ∈ N(A) in the
last step. We now see that f(x) = 0 for all x, hence f = 0. So indeed N is injective on
maps.

Secondly we have to prove N is surjective on maps. Let g : N(A) → N(B), define
f : A→ B as

f(x) =
∑
β

β∗g(xβ),

again we have written x as x =
∑

β β
∗xβ. Clearly N(f) = g. �

If we reflect a bit on why the functor M was not a candidate for an equivalence, we see
that N does a better job. We see that N leaves out all degenerate simplices, so it is
more carefully chosen than M , which included everything. In fact, Corollary 4.7 exactly
tells us M(X)n = N(X)n ⊕Dn(X).
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4.3. From Ch(Ab) to sAb. In this subsection we will construct a functor from
chain complexes to simplicial abelian groups. We will do this in a fairly abstract way.
There is, however, also an explicit description of this functor which will be given after
proving the main equivalence.

Let A be an additive category and F : sAb → A an additive functor. We want to
construct a functor G : A → sAb which is right adjoint to F . For each a ∈ A we have
to specify G(a) : ∆op → Ab. Assume we already specified this, such that G is the right
adjoint, then by the additive Yoneda lemma we know

G(a)n ∼= HomsAb(Z[∆[n]], G(a))

∼= HomA(FZ[∆[n]], a).

This in fact can be used as the definition of G:

G(a)n = HomA(FZ[∆[n]], a).

To check that indeed G(a) ∈ sAb we only have to remind ourselves that we only com-
posed two functors, namely

∆
∆[−]−−−−→ sSet

Z−−→ sAb
F−−→ A and

HomA(−, a) : Aop → Ab

giving us HomA(FZ[∆[−]], a) : ∆op → Ab. Similarly G itself is a functor, because it is
defined using the Hom-functor.

Many functors to sAb can be shown to have this description.2 In our case we can define
a functor K as

K : Ch(Ab)→ sAb

K(C) = HomCh(Ab)(NZ[∆[−]], C).

This is a very abstract definition so we will first discuss what a chain map NZ[∆[n]]→ C
looks like. Recall that the non-degenerate m-simplices of ∆[n] are exactly injective maps
η : [m] ↪→ [n] (Lemma 3.9). So NZ[∆[n]] consists of linear combinations of those non-
degenerate simplices, as N precisely gives us the non-degenerate elements. Note that
NZ[∆[n]]m are free groups, since Z[∆[n]]m are free. In other words, when defining a
chain map NZ[∆[n]] → C it is sufficient to define it on the generators, i.e. on the
injections η : [m] ↪→ [n]. This fact is used throughout the following proofs.

Furthermore the degeneracy maps si : K(C)n−1 → K(C)n are given by precomposition
of the induced map σi∗ : NZ[∆[n]] → NZ[∆[n − 1]] which in their turn are given by
postcomposition. More precisely this gives si(f)m(η) = fm(σiη) for any f ∈ K(C)n−1

and η : [m] ↪→ [n]. We will now have a closer look at the degenerate elements of
K(C).

Lemma 4.13. Let f : NZ[∆[n]]→ C be a chain map then f ∈ Dn(K(C)) if and only if
fr = 0 forall r ≥ n.

2And also many functors to sSet are of this form if we leave out all additivity requirements.
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Proof. If f ∈ Dn(K(C)) we can write f as f =
∑n

i=0 si(f
(i)) for some maps

f (i) : NZ[∆[n−1]]→ C. Since NZ[∆[n−1]]r = 0 as there are no injections [r] ↪→ [n−1],

we have f
(i)
r = 0 for all r > n− 1.

For the other direction let f : NZ[∆[n]] → C be a chain map and fr = 0 forall r ≥ n.

Define f
(i)
m (η) = fm(δiη) for η : [m] ↪→ [n]. This gives a chain map f (i) : NZ[∆[n− 1]]→

C by a simple calculation:

∂(f (i)
m (η)) = ∂(fm(δiη))

(1)
= fm−1(∂(δiη))

(2)
= fm−1(δiηδ0)

(2)
= f

(i)
m−1(∂(η)),

where we used that f is a chain map at (1) and the definition of the boundary operator
of N(−) and the definition of face maps in ∆[−] at (2).

Now let η : [m] ↪→ [n] and η 6= id (we already know f(id[n]) = 0 by assumption) then
by the epi-mono factorization we have η = δia · · · δi1 with a > 0, so

fm(η) = fm(δia · · · δi1)
(1)
= f (ia)

m (δia−1 · · · δi1)
(2)
= f (ia)

m (σiaδiaδia · · · δi1)
(3)
= sia(f (ia))m(η),

where we used the definition of f
(ia)
m at (1), one of the simplicial identities at (2) and the

definition of degeneracy maps at (3) as discussed earlier.

By the fact that injections are generators this gives fm =
∑n

i=0 si(f
(i))m for all m, i.e.

f =
∑n

i=0 si(f
(i)). Hence f ∈ Dn(K(C)). �

We now have enough lemmas to prove the main equivalence quite easily. The most
important lemma for the isomorphism X ∼= KNX will be the lemma stating that N is
fully faithful. For the other isomorphism we will use the above lemma to characterize
the degenerated simplices in K(C).

Theorem 4.14. N and K form an equivalence.

Proof. Let X be a simplicial abelian group. Then we have the following natural
isomorphisms of abelian groups:

Xn

(1)∼= Hom(Z[∆[n]], X)

(2)∼= Hom(NZ[∆[n]], NX)

(3)
= KN(X)n

Where we used the additive Yoneda lemma at (1) (Lemma 3.14), then we use the fully
faithfulness of N at (2) (Lemma 4.12) and at (3) we simply use the definition of K.
Using naturality in n we have established X ∼= KNX and by naturality in X we have
id ∼= KN , proving the first part of the equivalence.

For the second part we will explicitly define an isomorphism as

φn : NK(C)n → Cn

f 7→ fn(id[n]).
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Note that this is well defined by the fact that id[n] is a non-degenerate simplex. This
defines a natural chain map, because

φ(∂(f)) = ∂(f)n−1(id)
(1)
= (fn−1 ◦ ∂)(id)

(2)
= (∂ ◦ fn)(id) = ∂(φ(f)),

where we used the definition of ∂ at (1) and the fact that f is a chain map at (2).
Naturality follows easily by calculating

φ(NK(g)(f)) = φ(g ◦ f) = gn(fn(id)) = gn(φ(f)).

We will first show that φn is surjective. Let x ∈ Cn define a chain map as

gr(y) = 0 for r 6= n, n− 1

gn(id[n]) = x

gn−1(δi) =

{
∂(x) if i = 0

0 otherwise

Clearly φn(g) = x by definition and g is a chain map as we defined it to commute with the
boundary operators. For proving injectivity consider g ∈ ker(φn) then for trivial reasons
we have fr = 0 for all r > n and fn(id[n]) = 0 gives fn = 0. Applying Lemma 4.13 gives
us f ∈ Dn(K(C)), but f ∈ N(K(C))n. So by using Corollary 4.7 we get f = 0. Thus
φn is an isomorphism, which gives us NK(C) ∼= C.

We now have established two natural isomorphisms idsAb
∼= KN and NK ∼= idCh(Ab).

Hence we have an equivalence Ch(Ab) ' sAb. �

One might not be content with the abstract description of the functor K. In the remain-
der of this section a more explicit description will be given, and it will be indicated why
the two descriptions coincide.

Definition 4.15. For a chain complex C define the abelian groups

K ′(C)n =
⊕
β

Cβp ,

where β ranges over all surjections β : [n] � [p] and Cβp = Cp (β only acts as a
decoration).

Before we provide the face and degeneracy maps, one should see a nice symmetry with
Corollary 4.11. One can also prove the equivalence with this definition. The first iso-
morphism will be harder to prove, whereas the second isomorphism is easier, as we get
the characterization given by Lemma 4.13 almost by definition.

For a chain complex C we will turn the groups K ′(C)n into a simplicial abelian group
by defining K ′ on functions. Let α : [m] → [n] be a function in ∆, we will define

K ′(α) : K(C)n → K(C)m by defining it on each summand Cβp . Fix a summand Cβp ,
by using the epi-mono factorization we know βα = δσ for some injection δ and some
surjection σ. In the case δ = id, we make the following identification

Cβp
=−−→ Cσp ⊂ K ′(C)m.
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In the case δ = δ0 we use the boundary operator as follows:

Cβp
∂−−→ Cp−1

=−−→ Cσp−1 ⊆ K ′(C)m.

In all the other cases we define the map Cβp → K ′(C)m to be the zero map. We now
have defined a map on each of the summands which gives a map K ′(α) : K ′(C)n →
K ′(C)m.

We will not show that this functor K ′ is isomorphic to our functor K defined earlier,
however we will indicate that it makes sense by writing out explicit calculations for
K(C)0 and K(C)1. First we see that

K(C)0 = HomCh(Ab)(NZ∗∆[0], C) =

{ · · · 0 0 Z

· · · C2 C1 C0

f2 f1 f0

}
∼= C0 = K ′(C)0,

because for f1, f2, . . . there is no choice at all, and for f0 : Z → C0 we only have to
choose an image for 1 ∈ Z. In the next dimension we see

K(C)1 = HomCh(Ab)(NZ∗∆[1], C) =

{ · · · 0 Z Z2

· · · C2 C1 C0

f2 f1 f0

}
∼= C1⊕C0 = K ′(C)1,

because again we can choose f1 anyway we want, which gives us C1. But then we are
forced to choose f0(x, x) = ∂(f1(x)) for all x ∈ Z, so we are left with choosing an element
c ∈ C0 for defining f(1,−1) = c. Adding this gives C1 ⊕ C0.
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5. Homotopy

We have already seen homology in chain complexes. We can of course now translate
this notion to simplicial abelian groups, by assigning a simplicial abelian group X to
Hn(N(X)). But there is a more general notion of homotopy for simplicial sets, which
is also similar to the notion of homotopy in topology. We will define the notion of
homotopy groups for simplicial sets.

When dealing with homotopy groups in a topological space X we always need a base-
point ∗ ∈ X. This is also the case for simplicial sets. We will notate the chosen
base-point of a simplicial set X with ∗ ∈ X0. More formally, a pointed simplicial set
(X, ∗) is a simplicial set X together with a 0-simplex ∗ ∈ X0. By the Yoneda lemma
this 0-simplex corresponds to a map ∆[0] → X, and any simplex in the image will be
denoted by ∗. Another way of saying this is that we denote the degenerate simplices
s0(. . . (s0(∗)) . . .) ∈ Xn as ∗. Of course in our situation we are concerned with simplicial
abelian groups, where there is an obvious choice for the base-point given by the neutral
element 0.

5.1. Homotopy groups.

Definition 5.1. Given a simplicial set X with base-point ∗, we define Zn(X) to be the
set of n-simplices with the base-point as boundary, i.e.

Zn(X) = {x ∈ Xn|di(x) = ∗ for all i ≤ n}.
For two n-simplices x, x′ ∈ Zn(X), we define x ∼ x′ if there exists y ∈ Xn+1 such that

d0(y) = x,(11)

d1(y) = x′,(12)

di(y) = ∗ for all i > 1.(13)

We will call y the homotopy and notate y : x ∼ x′.

Of course we would like ∼ to be an equivalence relation, however this is not true for
all simplicial sets. For example there is in general no reason for symmetry, existence
of a homotopy from x to x′ does not give us a homotopy from x′ to x. One can give
an precise condition on when it is a equivalence relation, the so called Kan-condition.
In our case of simplicial abelian groups, however, we can prove directly that ∼ is an
equivalence relation.

In figure 8 it is shown why the definition of homotopy makes sense for n = 1. Two
homotopic 1-simplices from Zn(X) are depicted in two ways. The first way only shows
the structure we have, indicating what the boundaries are (as described by the face
maps). In the second figure we collapsed all occurrences of 0 into a single point. This
way of drawing a homotopy should remind the reader of homotopy (between paths) in
a topological space.

Lemma 5.2. For any simplicial abelian group X, the relation ∼ as defined above is an
equivalence relation on Zn(X). Furthermore it is compatible with addition.
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Figure 8. In the figure on the left two homotopic 1 simplices x, x′ ∈
Zn(X) are shown. The fact that d2(y) = ∗ is depicted by crossing out
the bottom line. The right image shows exactly the same structure if
we would draw the 0-simplex 0 only once (and hence also collapse the
degenerate 1-simplex d2y).

Before proving this, one should have a look at figure 9. In this figure we show what
we want to proof in degree n = 0 (i.e. the simplices of interest are points, and the
homotopies are paths).

Figure 9. The three properties of an equivalence relation: reflexivity,
symmetry and transitivity. The dashed lines show which homotopy we
should construct.

Proof. Reflexivity. Let x ∈ Zn(X), define y = s0x. By considering the simplicial
identities d0s0 = id and d1s0 = id, it follows that d0y = d1y = x. Furthermore
diy = dis0x = s0di−1x = 0 for all i > 1, because x ∈ Zn(X).

Symmetry. Let x, x′ ∈ Zn(X) with y : x ∼ x′. Define y′ = s0x+ s0x
′ − y, then by using

linearity: d0y
′ = x + x′ − x = x′ and d1y

′ = x + x′ − x′ = x. For i > 1 we again get
diy
′ = 0, because x ∈ Zn(X).

Transitivity. Let x0, x1, x2 ∈ Zn(X) with y : x0 ∼ x1 and z : x1 ∼ x2. Define w =
y + z − s0x1. By linearity we have d0w = x0 + x1 − x1 = x0, similarly d1w = x2. Again
for i > 1 we have diw = 0.

Addition. Let y : x0 ∼ x1 and z : x2 ∼ x3. Then by linearity y + z : x0 + x2 ∼ x1 + x3

and −y : −x0 ∼ −x1. �

Definition 5.3. Given a simplicial abelian group X, we define the n-th homotopy group
as

πn(X) = Zn(X)/∼.

Note that this is an abelian group, because Zn(X) is a subgroup of Xn, and ∼ also defines
a subgroup. It is relatively straight forward to prove that this definition coincides with
the n-th homology group of the associated normalized chain complex.
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Lemma 5.4. For any simplicial abelian group X:

πn(X) = Hn(N(X)).

Proof. By writing out the definitions of the n-cycles and n-boundaries of the nor-
malized chain complex, we see:

ker(∂) = {x ∈ N(X)n | ∂(x) = 0}
= {x ∈ Xn | di(x) = 0 forall i > 0 and d0(x) = 0}
= {x ∈ Xn | di(x) = 0 forall i ≤ n}
= Zn(X)

im(∂) = {∂(y) | y ∈ N(X)n+1}
= {d0y | y ∈ Xn+1, di(y) = 0 for all i > 0}
= {x ∈ N(X)n | x ∼ 0}

So we see that πn(X) = Zn(X)/∼ = ker(∂)/ im(∂) = Hn(N(X)). �

Corollary 5.5. For a chain complex C we have Hn(C) ∼= πn(K(C)).

Proof. By the established equivalence we have for any chain complex C:

πn(K(C)) ∼= Hn(N(K(C))) ∼= Hn(C).

�

5.2. Topology. In Section 2, we already defined the topological n-simplex ∆n ∈
Top. We will now relate these spaces to the standard n-simplices ∆[n] ∈ sSet. We will
define a functor ∆− : ∆→ Top as follows

∆−([n]) = ∆n = {(x0, x1, . . . , xn) ∈ Rn+1 | xi ≥ 0 and x0 + . . .+ xn = 1},
∆−(δi)(x0, . . . , xn) = (x0, . . . , xi−1, 0, xi, . . . , xn),

∆−(σi)(x0, . . . , xn) = (x0, . . . , xi + xi+1, . . . , xn).

The definition of ∆−(δi) was already defined in Section 2 as the face maps δi : ∆n →
∆n+1. So in addition we defined degeneracy maps. The reader is invited to check the
cosimplicial identities himself and conclude that we have a functor ∆− : ∆ → Top.
By composing this with the Hom-functor we obtain a functor S : Top → sSet given
by

Sing(X)n = HomTop(∆n, X).

Recall construction of the singular chain complex in Section 2:

Cn(X) = Z[HomTop(∆n, X)].

Where the boundary operator was given as an alternating sum. Looking more closely
we see that this construction decomposes as:

C : Top
Sing−−−→ sSet

Z−−→ sAb
M−−→ Ch(Ab),
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where the last functor is the unnormalized chain complex. All the categories involved
have a notion of homotopy. In topological spaces this is the known notion where f, g :
X → Y are homotopic if there exists a homotopy H : I ×X → Y with the appropriate
properties. In simplicial sets (or simplicial abelian groups) we only saw the notion of
homotopy groups, but there exists a more general notion of homotopy, as discussed in the
overview of Friedman [Fri12]. And finally in chain complexes we saw homology groups,
but this category also has a more general notion of chain homotopy, which can be found
in any book on homological algebra such as in the book of Rotman [Rot09].

It is known that for any simplicial abelian group both the normalized and unnormalized
chain complex have the same homology groups. More precisely for any simplicial abelian
group X we have:

Hn(N(X)) ∼= Hn(M(X)) for all n ∈ N.
This is for example proven in [EML53, Theorem 4.1]. So this assures that the homology
groups of the singular chain complex of a space are really the homotopy groups of the
simplicial abelian group which is in the background.
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Conclusion

In this thesis we have seen two interesting mathematical structures. On one hand there
are simplicial sets and simplicial abelian groups which are defined in a abstract and
categorical way. The definition was quite short and elegant, nevertheless the objects
have a very rich geometrical structure. On the other hand there are chain complexes
which have a very simple definition, which are at first sight completely algebraic.

A proof was given of the equivalence of these structures. In this proof we had to take
a close look at degenerated simplices in simplicial abelian groups. Some abstract ma-
chinery from category theory, like the Yoneda lemma, allowed us to easily construct the
needed isomorphisms.

The category of simplicial sets is the abstract framework for doing homotopy theory.
Using free abelian groups allowed us to linearize this, resulting in the category of sim-
plicial abelian groups. The Dold-Kan correspondence assures us that there is no loss of
information when passing to chain complexes. This makes the category of chain com-
plexes and homological algebra very suitable for doing homotopy theory in a linearized
fashion.
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