
Nominal Techniques and
Black Box Testing for
Automata Learning

Joshua Moerman

ii

Work in the thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics)

Printed by Gildeprint, Enschede

Typeset using ConTEXt MKIV

ISBN: 978–94–632–3696–6

IPA Dissertation series: 2019-06

Copyright © Joshua Moerman, 2019
www.joshuamoerman.nl

https://www.joshuamoerman.nl

Nominal Techniques and Black Box
Testing for Automata Learning

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen

op
maandag 1 juli 2019

om
16:30 uur precies

door

Joshua Samuel Moerman
geboren op 1 oktober 1991

te Utrecht

iv

Promotoren:
– prof. dr. F.W. Vaandrager
– prof. dr. A. Silva (University College London, Verenigd Koninkrijk)

Copromotor:
– dr. S.A. Terwijn

Leden manuscriptcommissie:
– prof. dr. B.P.F. Jacobs
– prof. dr. A.R. Cavalli (Télécom SudParis, Frankrijk)
– prof. dr. F. Howar (Technische Universität, Dortmund, Duitsland)
– prof. dr. S. Lasota (Uniwesytet Warszawkski, Polen)
– dr. D. Petrișan (Université Paris Diderot, Frankrijk)

Paranimfen:
– Alexis Linard
– Tim Steenvoorden

Samenvatting

Het leren van automaten speelt een steeds grotere rol bij de verificatie van software. Tij-
dens het leren, verkent een leeralgoritme het gedrag van software. Dit gaat in principe
volledig automatisch, en het algoritme pakt vanzelf interessante eigenschappen op
van de software. Het is hiermee mogelijk een redelijk precies model te maken van de
werking van het stukje software dat we onder de loep nemen. Fouten en onverwacht
gedrag van software kunnen hiermee worden blootgelegd.

In dit proefschrift kijken we in eerste instantie naar technieken voor testgeneratie.
Deze zijn nodig om het leeralgoritme een handje te helpen. Na het automatisch verken-
nen van gedrag, formuleert het leeralgoritme namelijk een hypothese die de software
nog niet goed genoeg modelleert. Om de hypothese te verfijnen en verder te leren,
hebben we tests nodig. Efficiëntie staat hierbij centraal: we willen zo min mogelijk
testen, want dat kost tijd. Aan de andere kant moeten we wel volledig testen: als er een
discrepantie is tussen het geleerde model en de software, dan willen we die met een
test kunnen aanwijzen.

In de eerste paar hoofdstukken laten we zien hoe testen van automaten te werk
gaat. We geven een theoretisch kader om verschillende, bestaande n-volledige testge-
neratiemethodes te vergelijken. Op grond hiervan beschrijven we een nieuw, efficiënt
algoritme. Dit nieuwe algoritme staat centraal bij een industriële casus waarin we een
model van complexe printer-software van Océ leren. We laten ook zien hoe een van
de deelproblemen – het onderscheiden van toestanden met zo kort mogelijke invoer –
efficiënt kan worden opgelost.

Het tweede thema in dit proefschrift is de theorie van formele talen en automaten
met oneindige alfabetten. Ook dit is zinnig voor het leren van automaten. Software, en in
het bijzonder internet-communicatie-protocollen, maken namelijk vaak gebruik van
„identifiers” om bijvoorbeeld verschillende gebruikers te onderscheiden. Het liefst
nemen we oneindig veel van zulke identifiers aan, aangezien we niet weten hoeveel
er nodig zijn voor het leren van de automaat.

We laten zien hoe we de leeralgoritmes gemakkelijk kunnen veralgemeniseren
naar oneindige alfabetten door gebruik te maken van nominale verzamelingen. In het
bijzonder kunnen we hiermee registerautomaten leren. Vervolgens werken we de
theorie van nominale automaten verder uit. We laten zien hoe je deze structuren
efficiënt kan implementeren. Enwe geven een speciale klasse van nominale automaten
die een veel kleinere representatie hebben. Dit zou gebruikt kunnen worden om zulke
automaten sneller te leren.

vi

Summary

Automata learning plays a more and more prominent role in the field of software
verification. Learning algorithms are able to automatically explore the behaviour of
software. By revealing interesting properties of the software, these algorithms can
create models of the, otherwise unknown, software. These learned models can, in
turn, be inspected and analysed, which often leads to finding bugs and inconsistencies
in the software.

An important tool which we need when learning software is test generation. This
is the topic of the first part of this thesis. After the learning algorithm has learned a
model and constructed a hypothesis, test generation methods are used to validate this
hypothesis. Efficiency is key: we want to test as little as possible, as testing may take
valuable time. However, our tests have to be complete: if the hypothesis fails to model
the software well, we better have a test which shows this discrepancy.

The first few chapters explain black box testing of automata. We present a theo-
retical framework in which we can compare existing n-complete test generation methods.
From this comparison, we are able to define a new, efficient algorithm. In an industrial
case study on embedded printer software, we show that this new algorithm works
well for finding counterexamples for the hypothesis. Besides the test generation, we
show that one of the subproblems – finding the shortest sequences to separate states –
can be solved very efficiently.

The second part of this thesis is on the theory of formal languages and automata
with infinite alphabets. This, too, is discussed in the context of automata learning. Many
pieces of software make use of identifiers or sequence numbers. These are used, for
example, in order to distinguish different users or messages. Ideally, we would like to
model such systems with infinitely many identifiers, as we do not know beforehand
how many of them will be used.

Using the theory of nominal sets, we show that learning algorithms can easily be
generalised to automata with infinite alphabets. In particular, this shows that we can
learn register automata. Furthermore, we deepen the theory of nominal sets. First,
we show that, in a special case, these sets can be implemented in an efficient way.
Second, we give a subclass of nominal automata which allow for a much smaller
representation. This could be useful for learning such automata more quickly.

viii

Acknowledgements

Foremost, I would like to thank my supervisors. Having three of them ensured that
there were always enough ideas to work on, theory to understand, papers to review,
seminars to attend, and chats to have. Frits, thank you for being a very motivating
supervisor, pushing creativity, and being only a few meters away. It started with a
small puzzle (trying a certain test algorithm to help with a case study), which was a
great, hands-on start of my Ph.D.. You introduced me to the field of model learning
in a way that showcases both the theoretical and practical aspects.

Alexandra, thanks for introducing me to abstract reasoning about state machines,
the coalgebraic way. Although not directly shown in this thesis, this way of thinking
has helped and you pushed me to pursuit clear reasoning. Besides the theoretical
things I’ve learned, you have also taught memany personal lessons inside and outside
of academia; thanks for inviting me to London, Caribbean islands, hidden cocktail
clubs, and the best food. And thanks for leaving me with Daniela and Matteo, who
introduced me to nominal techniques, while you were on sabbatical.

Bas, thanks for broadening my understanding of the topics touched upon in this
thesis. Unfortunately, we have no papers together, but the connections you showed to
logic, computational learning, and computability theory have influenced the thesis
nevertheless. I am grateful for the many nice chats we had.

I would like to thank the members of the manuscript committee, Bart, Ana, Falk,
Sławek, and Daniela. Reading a thesis is undoubtedly a lot of work, so thank you for
the effort and feedback you have given me. Thanks, also, to the additional members
coming to Nijmegen to oppose during the defence, Jan Friso, Jorge, and Paul.

On the first floor of the Mercator building, I had the pleasure of spending four
years with fun office mates. Michele, thanks for introducing me to the Ph.D. life, by
always joking around. Hopefully, we can play a game of Briscola again. Alexis, many
thanks for all the tasty proeverijen, whether it was beers, wines, poffertjes, kroketten,
or anything else. Your French influences will be missed. Niels, thanks for the abstract
nonsense and bashing on politics.

Next to our office, was the office with Tim, with whom I had the pleasure of
working from various coffee houses in Nijmegen. Further down the corridor, there
was the office of Paul and Rick. Paul, thanks for being the kindest colleague I’ve
had and for inviting us to your musical endeavours. Rick, thanks for the algorithmic
sparring, we had a great collaboration. Was there a more iconic duo on our floor? A
good contender would be Petra and Ramon. Thanks for the fun we had with ioco,
together with Jan and Mariëlle. Nils, thanks for steering me towards probabilistic

x

things and opening a door to Aachen. I am also very grateful to Jurriaan for bringing
back some coalgebra and category theory to our floor, and hosting me in London. My
other co-authors, Wouter, David, Bartek, Michał, andDavid, also deservemany credits
for all the interesting discussion we had. Harco, thanks for the technical support.
Special thanks go to Ingrid, for helping with the often-overlooked, but important,
administrative matters.

Doing a Ph.D. would not be complete without a good amount of playing kicker,
having borrels, and eating cakes at the iCIS institute. Thanks to all of you, Markus,
Bram, Marc, Sam, Bas, Joost, Dan, Giso, Baris, Simone, Aleks, Manxia, Leon, Jacopo,
Gabriel, Michael, Paulus, Marcos, Bas, and Henning.1

Thanks to the people I have met across the channel (which hopefully will remain
part of the EU): Benni, Nath, Kareem, Rueben, Louis, Borja, Fred, Tobias, Paul, Gerco,
and Carsten, for the theoretical adventure, but also for joining me to Phonox and other
parties in London. I am especially thankful to Matteo and Emanuela for hosting me
many times and for Hillary and Justin for accommodating me for three months each.

I had a lot of fun at the IPA events. I’m very thankful to Tim and Loek for organising
these events. Special thanks to Nico and Priyanka for organising a Halloween social
event with me. Also thanks to all the participants in the IPA events, you made it
a lot of fun! My gratitude extends to all the people I have met at summer schools
and conferences. I had a lot of fun learning about different cultures, languages, and
different ways of doing research. Hope we meet again!

Besides all the fun research, I had a great timewithmy friends and family. Wewent
to nice parties, had excellent dinners, andmuchmore; thanks, Nick, Edo, Gabe, Saskia,
Stijn, Sandra, Geert, Marco, Carmen, and Wesley. Thanks to Marlon, Hannah, Wouter,
Dennis, Christiaan, and others from #RU for borrels, bouldering, and jams. Thanks to
Ragnar, Josse, Julian, Jeroen, Vincent, and others from the BAPC for algorithmic fun.

Thanks to my parents, Kees and Irene, andmy brother, David, and his wife, Germa,
for their love and support. My gratitude extends to my family in law, Ine, Wim, Jolien
and Jesse. My final words of praise go to Tessa, my wife, I am very happy to have you
on my side. You inspire me in many ways, and I enjoy doing all the fun stuff we do.
Thank you a lot.

1 In no particular order. These lists are randomised.

Contents

Samenvatting . v

Summary . vii

Acknowledgements . ix

1 Introduction . 1
Model Learning . 1
Applications of Model Learning . 4
Research challenges . 5
Black Box Testing . 5
Nominal Techniques . 7
Contributions . 10
Conclusion and Outlook . 14

Part 1: Testing Techniques . 17

2 FSM-based Test Methods . 19
Mealy machines and sequences . 19
Test generation methods . 26
Hybrid ADS method . 31
Overview . 35
Proof of completeness . 36
Related Work and Discussion . 38

3 Applying Automata Learning to Embedded Control Software 41
Engine Status Manager . 44
Learning the ESM . 48
Verification . 52
Conclusions and Future Work . 56

4 Minimal Separating Sequences for All Pairs of States 59
Preliminaries . 60
Minimal Separating Sequences . 64
Optimising the Algorithm . 67
Application in Conformance Testing . 70
Experimental Results . 71
Conclusion . 72

xii

Part 2: Nominal Techniques . 73

5 Learning Nominal Automata . 75
Overview of the Approach . 77
Preliminaries . 84
Angluin’s Algorithm for Nominal DFAs . 86
Learning Non-Deterministic Nominal Automata . 93
Implementation and Preliminary Experiments . 101
Related Work . 105
Discussion and Future Work . 107

6 Fast Computations on Ordered Nominal Sets . 109
Nominal sets . 111
Representation in the total order symmetry . 113
Implementation and Complexity of ONS . 118
Results and evaluation in automata theory . 120
Related work . 126
Conclusion and Future Work . 128

7 Separation and Renaming in Nominal Sets . 131
Monoid actions and nominal sets . 133
A monoidal construction from Pm-sets to Sb-sets 137
Nominal and separated automata . 143
Related and future work . 149

Bibliography . 151

Curriculum Vitae . 169

Chapter 1
Introduction

When I was younger, I often learned how to play with new toys by messing about
with them, by pressing buttons at random, observing their behaviour, pressing more
buttons, and so on. Only resorting to the manual – or asking “experts” – to confirm
my beliefs on how the toys work. Now that I am older, I do mostly the same with new
devices, new tools, and new software. However, now I know that this is an established
computer science technique, called model learning.

Model learning2 is an automated technique to construct a state-based model –
often a type of automaton – from a black box system. The goal of this technique can
be manifold: it can be used to reverse-engineer a system, to find bugs in it, to verify
properties of the system, or to understand the system in one way or another. It is not
just random testing: the information learned during the interaction with the system
is actively used to guide following interactions. Additionally, the information learned
can be inspected and analysed.

This thesis is about model learning and related techniques. In the first part, I
present results concerning black box testing of automata. Testing is a crucial part in
learning software behaviour and often remains a bottleneck in applications of model
learning. In the second part, I show how nominal techniques can be used to learn
automata over structured infinite alphabets. The study on nominal automata was
directly motivated by work on learning network protocols which rely on identifiers or
sequence numbers.

But before we get ahead of ourselves, we should first understand what wemean by
learning, as learning means very different things to different people. In educational
science, learning may involve concepts such as teaching, blended learning, and inter-
disciplinarity. Data scientists may think of data compression, feature extraction, and
neural networks. In this thesis we are mostly concerned with software verification.
But even in the field of verification several types of learning are relevant.

1 Model Learning
In the context of software verification, we often look at stateful computations with
inputs and outputs. For this reason, it makes sense to look at words, or traces. For an
alphabet Σ, we denote the set of words by Σ∗.

2 There are many names for the type of learning, such as active automata learning. The generic name “model
learning” is chosen as a counterpoint to model checking.

2 Chapter 1

The learning problem is defined as follows. There is some fixed, but unknown,
language ℒ ⊆ Σ∗. This language may define the behaviour of a software component,
a property in model checking, a set of traces from a protocol, etc. We wish to infer a
description of ℒ after only having observed a small part of this language. For example,
we may have seen hundred words belonging to the language and a few which do not
belong to the language. Then concluding with a good description of ℒ is difficult, as
we are missing information about the infinitely many words we have not observed.

Such a learning problem can be stated and solved in a variety of ways. In the
applications we do in our research group, we often try to infer a model of a software
component. (Chapter 3 describes such an application.) In these cases, a learning algo-
rithm can interact with the software. So it makes sense to study a learning paradigm
which allows for queries, and not just a data set of samples.

A typical query learning framework was established by Angluin (1987). In her
framework, the learning algorithm may pose two types of queries to a teacher, or oracle:

Membership queries (MQ) The learner poses such a query by providing a word
w ∈ Σ∗ to the teacher. The teacher will then reply whether w ∈ ℒ or not. This
type of query is often generalised to more general output, in these cases we consider
ℒ : Σ∗ → O and the teacher replies with ℒ(w). In some papers, such a query is then
called an output query.

Equivalence queries (EQ) The learner can provide a hypothesised description H of
ℒ to the teacher. If the hypothesis is correct, the teacher replies with yes. If, however,
the hypothesis is incorrect, the teacher replies with no together with a counterexample,
i.e., a word which is in ℒ but not in the hypothesis or vice versa.

By posing many such queries, the learner algorithm is supposed to converge to
a correct model. This type of learning is hence called exact learning. Angluin (1987)
showed that one can do this efficiently for deterministic finite automata (DFAs), when
ℒ is in the class of regular languages.

It should be clear why this is called query learning or active learning. The learning
algorithm initiates interaction with the teacher by posing queries, it may construct its
own data points and ask for their corresponding label. Active learning is in contrast
to passive learning where all observations are given to the algorithm up front.

Another paradigm which is relevant for our type of applications is PAC-learning
with membership queries. Here, the algorithm can again use MQs as before, but the EQs
are replaced by random sampling. So the allowed query is:

Random sample queries (EX) If the learner poses this query (there are no parame-
ters), the teacher responds with a randomwordw together with its label, i.e., whether
w ∈ ℒ or not. (Here, random means that the words are sampled by some probability
distribution known to the teacher.)

Introduction 3

Instead of requiring that the learner exactly learns the model, we only require the
following. The learner should probably return a model which is approximate to the
target. This gives the name probably approximately correct (PAC). Note that there are
two uncertainties: the probable and the approximate part. Both parts are bounded by
parameters, so one can determine the confidence.

As with many problems in computer science, we are also interested in the efficiency
of learning algorithms. Instead of measuring time or space, we analyse the number of
queries posed by an algorithm. Efficiency often means that we require a polynomial
number of queries. But polynomial in what? The learner has no input, other than the
access to a teacher. We ask the algorithms to be polynomial in the size of the target (i.e.,
the size of the description which has yet to be learned). In the case of PAC learning
we also require it to be polynomial in the two parameters for confidence.

Deterministic automata can be efficiently learned in the PAC model. In fact, any ef-
ficient exact learning algorithmwithMQs and EQs can be transformed into an efficient
PAC algorithm with MQs (see Kearns & Vazirani, 1994, exercise 8.1). For this reason,
we mostly focus on the former type of learning in this thesis. The transformation
from exact learning to PAC learning is implemented by simply testing the hypothesis
with random samples. This can be postponed until we actually implement a learning
algorithm and apply it.

When using only EQs, only MQs, or only EXs, then there are hardness results for
exact learning of DFAs. So the combinationsMQs+ EQs (for exact learning) andMQs
+ EXs (for PAC learning) have been carefully picked, they provide a minimal basis
for efficient learning. See the book of Kearns and Vazirani (1994) for such hardness
results and more information on PAC learning.

So far, all the queries are assumed to be just there. Somehow, these are existing
procedureswhichwe can invokewith MQ(w), EQ(H), or EX(). This is a useful abstraction
when designing a learning algorithm. One can analyse the complexity (in terms of
number of queries) independently of how these queries are resolved. Nevertheless,
at some point in time one has to implement them. In our case of learning software
behaviour, membership queries are easily implemented: simply provide the word w
to a running instance of the software and observe the output.3 Equivalence queries,
however, are in general not doable. Even if we have the (machine) code, it is often way
too complicated to check equivalence. That is whywe resort to testing with EX queries.
The EX query from PAC learning normally assumes a fixed, unknown probability
distribution on words. In our case, we choose and implement a distribution to test
against. This cuts both ways: On the one hand, it allows us to only test behaviour
we really care about, on the other hand the results are only as good as our choice of
distribution. We deviate even further from the PAC-model as we sometimes change

3 In reality, it is a bit harder than this. There are plentiful of challenges to solve, such as timing, choosing
your alphabet, choosing the kind of observations to make, and being able to reliably reset the software.

4 Chapter 1

our distribution while learning. Yet, as applications show, this is a useful way of
learning software behaviour.

2 Applications of Model Learning
Since this thesis contains only one real-world application of learning in Chapter 3,
it is good to mention a few others. Although we remain in the context of learning
software behaviour, the applications are quite different from each other. This is by no
means a complete list.

Bug finding in protocols. A prominent example is by Fiterău-Broștean, et al. (2016).
They learn models of TCP implementations – both clients and server sides. Inter-
estingly, they found bugs in the (closed source) Windows implementation. Later,
Fiterău-Broștean and Howar (2017) also found a bug in the sliding window of the
Linux implementation of TCP. Other protocols have been learned as well, such as the
MQTT protocol by Tappler, et al. (2017), TLS by de Ruiter and Poll (2015), and SSH
by Fiterău-Broștean, et al. (2017). Many of these applications reveal bugs by learning
a model and consequently apply model checking. The combination of learning and
model checking was first described by Peled, et al. (2002).

Bug finding in smart cards. Aarts, et al. (2013) learn the software on smart cards
of several Dutch and German banks. These cards use the EMV protocol, which is
run on the card itself. So this is an example of a real black box system, where no
other monitoring is possible and no code is available. No vulnerabilities were found,
although each card had a slightly different state machine. The e.dentifier, a card
reader implementing a challenge-response protocol, has been learned by Chalupar, et
al. (2014). They built a Lego machine which could automatically press buttons and
the researchers found a security flaw in this card reader.

Regression testing. Hungar, et al. (2003) describe the potential of automata learning
in regression testing. The aim is not to find bugs, but to monitor the development
process of a system. By considering the differences between models at different stages,
one can generate regressions tests.

Refactoring legacy software. Model learning can also be used in order to verify
refactored software. Schuts, et al. (2016) have applied this at a project within Philips.
They learn both an old version and a new version of the same component. By com-
paring the learned models, some differences could be seen. This gave developers
opportunities to solve problems before replacing the old component by the new one.

Introduction 5

3 Research challenges
In this thesis, wewill mostly see learning of deterministic automata orMealymachines.
Although this is limited, as many pieces of software require richer models, it has been
successfully applied in the above examples. The limitations include the following.
– The system behaves deterministically.
– One can reliably reset the system.
– The system can be modelled with a finite state space. This also means that the

model does not incorporate time or data.
– The input alphabet is finite.
– One knows when the target is reached.

Research challenge 1: Approximating equivalence queries. Having confidence
in a learned model is difficult. We have PAC guarantees (as discussed before), but
sometimes we may want to draw other conclusions. For example, we may require the
hypothesis to be correct, provided that the real system is implemented with a certain
number of states. Efficiency is important here: We want to obtain those guarantees
fast and we want to quickly find counterexamples when the hypothesis is wrong. Test
generation methods is the topic of the first part in this thesis. We will review existing
algorithms and discuss new algorithms for test generation.

Research challenge 2: Generalisation to infinite alphabets. Automata over infinite
alphabets are very useful for modelling protocols which involve identifiers or time-
stamps. Not only is the alphabet infinite in these cases, the state space is as well, since
the values have to be remembered. In the second part of this thesis, we will see how
nominal techniques can be used to tackle this challenge.

Being able to learn automata over an infinite alphabet is not new. It has been
tackled, for instance, by Howar, et al. (2012), Bollig, et al. (2013) and in the theses
of Aarts (2014), Cassel (2015), and Fiterău-Broștean (2018). In the first thesis, the
problem is solved by considering abstractions, which reduces the alphabet to a finite
one. These abstractions are automatically refinedwhen a counterexample is presented
to the algorithms. Fiterău-Broștean (2018) extends this approach to cope with “fresh
values”, crucial for protocols such as TCP. In the thesis by Cassel (2015), another
approach is taken. The queries are changed to tree queries. The approach in my thesis
will be based on symmetries, which gives yet another perspective into the problem of
learning such automata.

4 Black Box Testing
An important step in automata learning is equivalence checking. Normally, this is
abstracted away and done by an oracle, but we intend to implement such an oracle

6 Chapter 1

ourselves for our applications. Concretely, the problem we need to solve is that of
conformance checking4 as it was first described by Moore (1956).

The problem is as follows: Given the description of a finite state machine and a
black box system, does the system behave exactly as the description? We wish to
determine this by running experiments on the system (as it is black box). It should
be clear that this is a hopelessly difficult task, as an error can be hidden arbitrarily
deep in the system. That is why we often assume some knowledge of the system. In
this thesis we often assume a bound on the number of states of the system. Under these
conditions, Moore (1956) already solved the problem. Unfortunately, his experiment
is exponential in size, or in his own words: “fantastically large.”

Years later, Chow (1978) and Vasilevskii (1973) independently designed efficient
experiments. In particular, the set of experiments is polynomial in the number of
states. These techniques will be discussed in detail in Chapter 2. More background
and other related problems, as well as their complexity results, are well exposed in a
survey of Lee and Yannakakis (1994).

slow
spinning

fast
spinning

no
spinning

no
spinning

� �

�

� �

�

�

� � � �

�

Figure 1.1 Behaviour of a record player
modelled as a finite state machine.

To give an example of conformance checking, we model a record player as a finite
state machine. We will not model the audible output – that would depend not only
on the device, but also the record one chooses to play5. Instead, the only observation
we can make is looking how fast the turntable spins. The device has two buttons: a

4 Also known as machine verification or fault detection.
5 In particular, we have to add time to the model as one side of a record only lasts for roughly 25 minutes.
Unless we take a record with sound on the locked groove such as the Sgt. Pepper’s Lonely Hearts Club Band
album by The Beatles.

Introduction 7

start-stop button (� �) and a speed button (�) which toggles between 3313 rpm and
45 rpm. When turned on, the system starts playing immediately at 3313 rpm – this
is useful for DJing. The intended behaviour of the record player has four states as
depicted in Figure 1.1.

Let us consider some faults which could be present in an implementation with
four states. In Figure 1.2, two flawed record players are given. In the first (Figure 1.2a),
the sequence � � � � leads us to the wrong state. However, this is not immediately
observable, the turntable is in a non-spinning state as it should be. The fault is only
visible when we press � � once more: now the turntable is spinning fast instead of
slow. The sequence � � � � � � is a counterexample. In the second example (Figure 1.2b),
the fault is again not immediately obvious: after pressing � � � we are in the wrong
state as observed by pressing � � . Here, the counterexample is � � � � � .

When a model of the implementation is given, it is not hard to find counterex-
amples. However, in a black box setting we do not have such a model. In order test
whether a black box system is equivalent to a model, we somehow need to test all
possible counterexamples. In this example, a test suite should include sequences such
as � � � � � � and � � � � � .

slow
spinning

fast
spinning

no
spinning

no
spinning

� �

�

� �

�

�

� � � �

�

slow
spinning

fast
spinning

no
spinning

no
spinning

� �

�

� �

�

�

� �

� �

�

(a) (b)

Figure 1.2 Two faulty record players.

5 Nominal Techniques
In the second part of this thesis, I will present results related to nominal automata.
Usually, nominal techniques are introduced in order to solve problems involving
name binding in topics like lambda calculus. However, we use them in automata

8 Chapter 1

theory, specifically to model register automata. These are automata which have an
infinite alphabet, often thought of as input actions with data. The control flow of the
automaton may actually depend on the data. However, the data cannot be used in an
arbitrary way as this would lead to many decision problems, such as emptiness and
equivalence, being undecidable.6 A principal concept in nominal techniques is that of
symmetries.

To motivate the use of symmetries, we will look at an example of a register aut-
tomaton. In the following automaton we model a (not-so-realistic) login system for a
single person. The alphabet consists of the following actions:

sign-up(p) logout()
login(p) view()

The sign-up action allows one to set a password p. This can only be done when the
system is initialised. The login and logout actions speak for themselves and the
view action allows one to see the secret data (we abstract away from what the user
actually gets to see here). A simple automaton with roughly this behaviour is given
in Figure 1.3. We will only informally discuss its semantics for now.

q0
q1
r

q2
r

∗ / �

sign-up(p) / �

set r ≔ p

∗ / �

login(p) / �

if r = p

view() / �

∗ / �

logout() / �

Figure 1.3 A simple register automaton. The symbol ∗ denotes any input
otherwise not specified. The r in states q1 and q2 is a register.

To model the behaviour, we want the domain of passwords to be infinite. After all,
one should allow arbitrarily long passwords to be secure. This means that a register
automaton is actually an automaton over an infinite alphabet.

Common algorithms for automata, such as learning, will not work with an infinite
alphabet. Any loop which iterates over the alphabet will diverge. In order to cope
with this, we will use the symmetries present in the alphabet.

Let us continue with the example and look at its symmetries. If a person signs up
with a password “hello” and consequently logins with “hello”, then this is not dis-
tinguishable from a person signing up and logging in with “bye”. This is an example
of symmetry: the values “hello” and “bye” can be permuted, or interchanged. Note,
however, that the trace sign-up(hello)login(bye) is different from the two before:

6 The class of automata with arbitrary data operations is sometimes called extended finite state machines.

Introduction 9

no permutation of “hello” and “bye” will bring us to a logged-in state with that trace.
So we see that, despite the symmetry, we cannot simply identify the value “hello”
and “bye”. For this reason, we keep the alphabet infinite and explicitly mention its
symmetries.

Using symmetries in automata theory is not a new idea. In the context of model
checking, the first to use symmetries were Emerson and Sistla (1996) and Ip and
Dill (1996). But only Ip and Dill (1996) used it to deal with infinite data domains.
For automata learning with infinite domains, symmetries were used by Sakamoto
(1997). He devised an L∗ learning algorithm for register automata, much like the
one presented in Chapter 5. The symmetries are crucial to reduce the problem to
a finite alphabet and use the regular L∗ algorithm. (Chapter 5 shows how to do it
with more general symmetries.) Around the same time Ferrari, et al. (2005) worked
on automata theoretic algorithms for the π-calculus. Their approach was based on
the same symmetries and they developed a theory of named sets to implement their
algorithms. Named sets are equivalent to nominal sets. However, nominal sets are
defined in a more elementary way. The nominal sets we will soon see are introduced
by Gabbay and Pitts (2002) to solve certain problems in name binding in abstract
syntaxes. Although this is not really related to automata theory, it was picked up
by Bojańczyk, et al. (2014), who provide an equivalence between register automata
and nominal automata. (This equivalence is exposed in more detail in the book of
Bojańczyk, 2018.) Additionally, they generalise the work on nominal sets to other
symmetries.

The symmetries we encounter in this thesis are listed below, but other symmetries
can be found in the literature. The symmetry directly corresponds to the data values
(and operations) used in an automaton. The data values are often called atoms.

– The equality symmetry. Here the domain can be any countably infinite set. We can
take, for example, the set of strings we used before as the domain from which we
take passwords. No further structure is used on this domain, meaning that any
value is just as good as any other. The symmetries therefore consist of all bijections
on this domain.

– The total order symmetry. In this case, we take a countable infinite set with a dense
total order. Typically, this means we use the rational numbers, ℚ, as data values
and symmetries which respect the ordering.

5.1 What is a nominal set?

So what exactly is a nominal set? I will not define it here and leave the formalities to
the corresponding chapters. It suffices, for now, to think of nominal sets as abstract
sets (often infinite) onwhich a group of symmetries acts. This actionmakes it possible
to interpret the symmetries of the data values in the abstract set. For automata, this

10 Chapter 1

allows us to talk about symmetries on the state space, the set of transitions, and the
alphabet.

In order to implement these sets algorithmically, we impose two finiteness require-
ments. Both properties can be expressed using only the group action.

– Each element is finitely supported. A way to think of this requirement is that each
element is “constructed” out of finitely many data values.

– The set is orbit-finite. This means that we can choose finitely many elements such
that any other element is a permuted version of one of those elements.

If we wish to model the automaton from Figure 1.3 as a nominal automaton, then we
can simply define the state space as

Q = {q0} ∪ {q1,a | a ∈ 𝔸} ∪ {q2,a | a ∈ 𝔸},

where 𝔸 is the set of atoms. In this example, 𝔸 is the set of all possible passwords.
The set Q is infinite, but satisfies the two finiteness requirements.

The upshot of doing this is that the set Q (and transition structure) corresponds
directly to the semantics of the automaton. We do not have to encode how values relate
or how they interact. Instead, the set (and transition structure) defines all we need
to know. Algorithms, such as reachability, minimisation, and learning, can be run on
such automata, despite the sets being infinite. These algorithms can be implemented
rather easily by using a libraries such as Nλ, Lois, or Ons from Chapter 6. These
libraries implement a data structure for nominal sets, and provide ways to iterate over
such (infinite) sets.

One has to be careful as not all results from automata theory transfer to nom-
inal automata. A notable example is the powerset construction, which converts a
non-deterministic automaton into a deterministic one. The problem here is that the
powerset of a set is generally not orbit-finite and so the finiteness requirement is not
met. Consequently, languages accepted by nominal DFAs are not closed under Kleene
star, or even concatenation.

6 Contributions
This thesis is split into two parts. Part 1 containsmaterial about black box testing, while
Part 2 is about nominal techniques. The chapters can be read in isolation. However,
the chapters do get more technical and mathematical – especially in Part 2.

Detailed discussion on relatedwork and future directions of research are presented
in each chapter.

Chapter 2: FSM-based test methods. This chapter introduces test generation meth-
odswhich can be used for learning or conformance testing. Themethods are presented

Introduction 11

in a uniformway, which allows to give a single proof of completeness for all thesemeth-
ods. Moreover, the uniform presentation gives room to develop new test generation
methods. The main contributions are:

– Uniform description of known methods: Theorem 26 (p. 35)
– A new proof of completeness: Section 5 (p. 36)
– New algorithm (hybrid ADS) and its implementation: Section 3.2 (p. 34)

Chapter 3: Applying automata learning to embedded control software. In this
chapter we will apply model learning to an industrial case study. It is a unique
benchmark as it is much bigger than any of the applications seen before (3410 states
and 77 inputs). This makes it challenging to learn a model and the main obstacle is
finding counterexamples. The main contribution is:

– Application of the hybrid ADS algorithm: Section 2.2 (p. 49)
– Succesfully learn a large-scale system: Section 2.3 (p. 51)

This is based on the following publication:
Smeenk, W., Moerman, J., Vaandrager, F. W., & Jansen, D. N. (2015). Applying Au-
tomata Learning to Embedded Control Software. In Formal Methods and Software
Engineering - 17th International Conference on Formal Engineering Methods, ICFEM, Pro-
ceedings. Springer. doi:10.1007/978-3-319-25423-4_5.

Chapter 4: Minimal separating sequences for all pairs of states. Continuing on
test generation methods, this chapter presents an efficient algorithm to construct
separating sequences. Not only is the algorithm efficient – it runs in𝒪(n logn) time – it
also constructsminimal length sequences. The algorithm is inspired by aminimisation
algorithm by Hopcroft (1971), but extending it to construct witnesses is non-trivial.
The main contributions are:

– Efficient algorithm for separating sequences: Algorithms 4.2 & 4.4 (p. 66 & 68)
– Applications to black box testing: Section 4 (p. 70)
– Implementation: Section 5 (p. 71)

This is based on the following publication:
Smetsers, R., Moerman, J., & Jansen, D. N. (2016). Minimal Separating Sequences for
All Pairs of States. In Language and Automata Theory and Applications - 10th International
Conference, LATA, Proceedings. Springer. doi:10.1007/978-3-319-30000-9_14.

Chapter 5: Learning nominal automata. In this chapter, we show how to learn
automata over infinite alphabets. We do this by translating the L∗ algorithm directly to
a nominal version, νL∗. The correctness proofs mimic the original proofs by Angluin

http://dx.doi.org/10.1007/978-3-319-25423-4_5
http://dx.doi.org/10.1007/978-3-319-30000-9_14

12 Chapter 1

(1987). Since our new algorithm is close to the original, we are able to translate
variants of the L∗ algorithm as well. In particular, we provide a learning algorithm for
nominal non-deterministic automata. The main contributions are:

– L∗-algorithm for nominal automata: Section 3 (p. 86)
– Its correctness and complexity: Theorem 7 & Corollary 11 (p. 89 & 93)
– Generalisation to non-deterministic automata: Section 4.2 (p. 96)
– Implementation in Nλ: Section 5.2 (p. 103)

This is based on the following publication:
Moerman, J., Sammartino, M., Silva, A., Klin, B., & Szynwelski, M. (2017). Learning
nominal automata. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL. ACM. doi:10.1145/3009837.3009879.

Chapter 6: Fast computations on ordered nominal sets. In this chapter, we provide a
library to computewith nominal sets. We restrict our attention to nominal sets over the
total order symmetry. This symmetry allows for a rather easy characterisation of orbits,
and hence an easy implementation. We experimentally show that it is competitive
with existing tools, which are based on SMT solvers. The main contributions are:

– Characterisation theorem of orbits: Table 6.1 (p. 118)
– Complexity results: Theorems 18 & 21 (p. 119 and 123)
– Implementation: Section 3 (p. 118)

This is based on the following publication:
Venhoek, D., Moerman, J., & Rot, J. (2018). Fast Computations on Ordered Nomi-
nal Sets. In Theoretical Aspects of Computing - ICTAC - 15th International Colloquium,
Proceedings. Springer. doi:10.1007/978-3-030-02508-3_26.

Chapter 7: Separation and Renaming in Nominal Sets. We investigate how to
reduce the size of certain nominal automata. This is based on the observation that
some languages (with outputs) are not just invariant under symmetries, but invariant
under arbitrary transformations, or renamings. We define a new type of automaton, the
separated nominal automaton, and show that they exactly accept those languages which
are closed under renamings. All of this is shown by using a theoretical framework:
we establish a strong relationship between nominal sets on one hand, and nominal
renaming sets on the other. The main contributions are:

– Adjunction between nominal sets and renaming sets: Theorem 16 (p. 138)
– This adjunction is monoidal: Theorem 17 (p. 139)
– Separated automata have reduced state space: Example 36 (p. 147)

This is based on a paper under submission:

http://dx.doi.org/10.1145/3009837.3009879
http://dx.doi.org/10.1007/978-3-030-02508-3_26

Introduction 13

Moerman, J. & Rot, J. (2019). Separation and Renaming in Nominal Sets. (Under submis-
sion).

Besides these chapters in this thesis, I have published the following papers. These
are not included in this thesis, but a short summary of those papers is presented
below.

Complementing Model Learning with Mutation-Based Fuzzing. Our group at
the Radboud University participated in the RERS challenge 2016. This is a challenge
where reactive software is provided and researchers have to asses validity of certain
properties (given as LTL specifications). We approached this with model learning:
Instead of analysing the source code, we simply learned the external behaviour, and
then used model checking on the learned model. This has worked remarkably well,
as the models of the external behaviour are not too big. Our results were presented at
the RERS workshop (ISOLA 2016). The report can be found on arΧiv:
Smetsers, R., Moerman, J., Janssen, M., & Verwer, S. (2016). Complementing Model
Learning with Mutation-Based Fuzzing. CoRR, abs/1611.02429. Retrieved from http:/
/arxiv.org/abs/1611.02429.

𝐧-Complete test suites for IOCO. In this paper, we investigate complete test suites
for labelled transition systems (LTSs), instead of deterministic Mealy machines. This
is a much harder problem than conformance testing of deterministic systems. The
systemmay adversarially avoid certain states the testerwishes to test. We provide a test
suite which is n-complete (provided the implementation is a suspension automaton).
Mymain personal contribution here is the proof of completeness, which resembles the
proof presented in Chapter 2 closely. The conference paper was presented at ICTSS:
van den Bos, P., Janssen, R., & Moerman, J. (2017). n-Complete Test Suites for IOCO.
In ICTSS 2017 Proceedings. Springer. doi:10.1007/978-3-319-67549-7_6.
An extended version has appeared in:
van den Bos, P., Janssen, R., & Moerman, J. (2018). n-Complete Test Suites for IOCO.
Software Quality Journal. Advanced online publication. doi:10.1007/s11219-018-9422-x.

Learning Product Automata. In this article, we consider Moore machines with
multiple outputs. These machines can be decomposed by projecting on each output,
resulting in smaller components that can be learned with fewer queries. We give
experimental evidence that this is a useful technique which can reduce the number of
queries substantially. This is all motivated by the idea that compositional methods are
widely used throughout engineering and that we should use this in model learning.
This work was presented at ICGI 2018:

http://arxiv.org/abs/1611.02429
http://arxiv.org/abs/1611.02429
http://dx.doi.org/10.1007/978-3-319-67549-7_6
http://dx.doi.org/10.1007/s11219-018-9422-x

14 Chapter 1

Moerman, J. (2019). Learning Product Automata. In International Conference on Gram-
matical Inference, ICGI, Proceedings. Proceedings of Machine Learning Research. (To
appear).

7 Conclusion and Outlook
With the current tools for model learning, it is possible to learn big state machines
of black box systems. It involves using the clever algorithms for learning (such as
the TTT algorithm by Isberner, 2015) and efficient testing methods (see Chapter 2).
However, as the industrial case study from Chapter 3 shows, the bottleneck is often
in conformance testing.

In order to improve on this bottleneck, one possible direction is to consider ‘grey
box testing.’ The methods discussed in this thesis are all black box methods, this could
be considered as ‘too pessimistic.’ Often, we do have (parts of the) source code and
we do know relationships between different inputs. A question for future research
is how this additional information can be integrated in a principled manner in the
learning and testing of systems.

Black box testing still has theoretical challenges. Current generalisations to non-
deterministic systems or language inclusion (such as black box testing for IOCO) often
need exponentially big test suites. Whether this is necessary is unknown (to me): we
only have upper bounds but no lower bounds. An interesting approach could be to
see if there exists a notion of reduction between test suites. This is analogous to the
reductions used in complexity theory to prove hardness of problems, or reductions
used in PAC theory to prove learning problems to be inherently unpredictable.

Another path taken in this thesis is the research on nominal automata. This was
motivated by the problem of learning automata over infinite alphabets. So far, the
results on nominal automata are mostly theoretical in nature. Nevertheless, we show
that the nominal algorithms can be implemented and that they can be run concretely
on black box systems (Chapter 5). The advantage of using the foundations of nominal
sets is that the algorithms are closely related to the original L∗ algorithm. Consequently,
variations of L∗ can easily be implemented. For instance, we show that NL∗ algorithm
for non-deterministic automataworks in the nominal case too. (We have not attempted
to implement more recent algorithms such as TTT.) The nominal learning algorithms
can be implemented in just a few hundreds lines of code, much less than the approach
taken by, e.g., Fiterău-Broștean (2018).

In this thesis, we tackle some efficiency issues when computing with nominal sets.
In Chapter 6 we characterise orbits in order to give an efficient representation (for the
total-order symmetry). Another result is the fact that some nominal automata can be
‘compressed’ to separated automata, which can be exponentially smaller (Chapter 7).
However, the nominal tools still leave much to be desired in terms of efficiency.

Introduction 15

Last, it would be interesting to marry the two paths taken in this thesis. I am
not aware of n-complete test suites for register automata or nominal automata. The
results on learning nominal automata in Chapter 5 show that this should be possible,
as an observation table gives a test suite.7 However, there is an interesting twist to
this problem. The test methods from Chapter 2 can all account for extra states. For
nominal automata, we should be able to cope with extra states and extra registers. It
would be interesting to see how the test suite grows as these two dimensions increase.

7 The rows of a table are access sequences, and the columns provide a characterisation set.

16 Chapter 1

Part 1:
Testing Techniques

18 Chapter

Chapter 2
FSM-based Test Methods

In this chapter, we will discuss some of the theory of test generation methods for black
box conformance checking. Since the systems we consider are black box, we cannot
simply determine equivalence with a specification. The only way to gain confidence
is to perform experiments on the system. A key aspect of test generation methods is
the size and completeness of the test suites. On one hand, we want to cover as much
as the specification as possible, hopefully ensuring that we find mistakes in any faulty
implementation. On the other hand: testing takes time, so we want to minimise the
size of a test suite.

The test methods described here are well-known in the literature of FSM-based
testing. They all share similar concepts, such as access sequences and state identifiers. In
this chapter we will define these concepts, relate them with one another and show
how to build test suites from these concepts. This theoretically discussion is new and
enables us to compare the different methods uniformly. For instance, we can prove
all these methods to be n-complete with a single proof.

The discussion also inspired a newalgorithm: the hybridADSmethods. Thismethod
is applied to an industrial case study in Chapter 3. It combines the strength of the
ADS method (which is not always applicable) with the generality of the HSI method.

This chapter starts with the basics: Mealy machines, sequences and what it means
to test a black box system. Then, starting from Section 1.3 we define several concepts,
such as state identifiers, in order to distinguish one state from another. These concepts
are then combined in Section 2 to derive test suites. In a similar vein, we define a novel
test method in Section 3 and we discuss some of the implementation details of the
hybrid-ads tool. We summarise the various test methods in Section 4. All methods
are proven to be n-complete in Section 5. Finally, in Section 6, we discuss related work.

1 Mealy machines and sequences
We will focus on Mealy machines, as those capture many protocol specifications and
reactive systems.

We fix finite alphabets I and O of inputs respectively outputs. We use the usual
notation for operations on sequences (also called words): uv for the concatenation of
two sequences u, v ∈ I∗ and |u| for the length of u. For a sequence w = uv we say that
u and v are a prefix and suffix respectively.

20 Chapter 2

Definition 1. A (deterministic and complete) Mealy machineM consists of a finite
set of states S, an initial state s0 ∈ S and two functions:
– a transition function δ : S × I → S, and
– an output function λ : S × I → O.
Both the transition function and output function are extended inductively to sequences
as δ : S × I∗ → S and λ : S × I∗ → O∗:

δ(s, ϵ)= s λ(s, ϵ)= ϵ
δ(s, aw)= δ(δ(s, a),w) λ(s, aw)= λ(s, a)λ(δ(s, a),w)

The behaviour of a state s is given by the output function λ(s,−) : I∗ → O∗. Two states
s and t are equivalent if they have equal behaviours, written s ∼ t, and two Mealy
machines are equivalent if their initial states are equivalent.

Remark 2. We will use the following conventions and notation. We often write
s ∈ M instead of s ∈ S and for a secondMealy machineM′ its constituents are denoted
S′, s′0, δ′ and λ′. Moreover, if we have a state s ∈ M, we silently assume that s is not
a member of any other Mealy machine M′. (In other words, the behaviour of s is
determined by the state itself.) This eases the notation since we can write s ∼ twithout
needing to introduce a context.

An example Mealy machine is given in Figure 2.1.

s0

s1

s2

s3

s4

a/1

b/0
c/0

a/0

b/0, c/0

b/0, c/0a/1

a/1

b/0 c/1

a/1

b/0

c/0

Figure 2.1 An example specification with
input I = {a, b, c} and output O = {0, 1}.

1.1 Testing

In conformance testing we have a specification modelled as a Mealy machine and
an implementation (the system under test, or SUT) which we assume to behave as
a Mealy machine. Tests, or experiments, are generated from the specification and
applied to the implementation. We assume that we can reset the implementation
before every test. If the output is different from the specified output, then we know

FSM-based Test Methods 21

the implementation is flawed. The goals is to test as little as possible, while covering
as much as possible.

A test suite is nothing more than a set of sequences. We do not have to encode
outputs in the test suite, as those follow from the deterministic specification.

Definition 3. A test suite is a finite subset T ⊆ I∗.

A test t ∈ T is called maximal if it is not a proper prefix of another test s ∈ T. We denote
the set of maximal tests of T bymax(T). The maximal tests are the only tests in Twe
actually have to apply to our SUT as we can record the intermediate outputs. In the
examples of this chapter we will showmax(T) instead of T.

We define the size of a test suite as usual (Dorofeeva, et al., 2010 and Petrenko,
et al., 2014). The size of a test suite is measured as the sum of the lengths of all its
maximal tests plus one reset per test.

Definition 4. The size of a test suite T is defined to be ‖T‖ = ∑
t∈max(T)

(|t| + 1).

1.2 Completeness of test suites

Example 5. No test suite is complete. Consider the specification in Figure 2.2a.
This machine will always outputs a cup of coffee – when given money. For any test
suite we can make a faulty implementation which passes the test suite. A faulty
implementation might look like Figure 2.2b, where the machine starts to output beers
after n steps (signalling that it’s the end of the day), where n is larger than the length
of the longest sequence in the suite. This shows that no test-suite can be complete and
it justifies the following definition.

s0

� /�

s′0 s′1 ⋯ s′n� /� � /� � /�

� /�

(a) (b)

Figure 2.2 A basic example showing that finite test suites are incomplete. The im-
plementation on the right will pass any test suite if we choose n big enough.

Definition 6. Let M be a Mealy machine and T be a test suite. We say that T is
m-complete (for M) if for all inequivalent machines M′ with at most m states there
exists a t ∈ T such that λ(s0, t) ≠ λ′(s′0, t).

We are often interested in the case of m-completeness, where m = n + k for some
k ∈ ℕ and n is the number of states in the specification. Here k will stand for the
number of extra states we can test.

22 Chapter 2

Note the order of the quantifiers in the above definition. We ask for a single test
suite which works for all implementations of bounded size. This is crucial for black
box testing, as we do not know the implementation, so the test suite has to work for
all of them.

1.3 Separating Sequences

Before we construct test suites, we discuss several types of useful sequences. All the
following notions are standard in the literature, and the corresponding references
will be given in Section 2, where we discuss the test generation methods using these
notions. We fix a Mealy machineM for the remainder of this chapter.

Definition 7. We define the following kinds of sequences.
– Given two states s, t inMwe say that w is a separating sequence if λ(s,w) ≠ λ(t,w).
– For a single state s inM, a sequence w is a unique input output sequence (UIO) if for

every inequivalent state t inMwe have λ(s,w) ≠ λ(t,w).
– Finally, a (preset) distinguishing sequence (DS) is a single sequence w which sep-

arates all states ofM, i.e., for every pair of inequivalent states s, t inM we have
λ(s,w) ≠ λ(t,w).

The above list is ordered from weaker to stronger notions, i.e., every distinguishing
sequence is an UIO sequence for every state. Similarly, an UIO for a state s is a
separating sequence for s and any inequivalent t. Separating sequences always exist
for inequivalent states and finding them efficiently is the topic of Chapter 4. On the
other hand, UIOs and DSs do not always exist for a machine.

A machine M is minimal if every distinct pair of states is inequivalent (i.e.,
s ∼ t ⟹ s = t). We will not require M te be minimal, although this is often
done in literature. Minimality is sometimes convenient, as one can write ‘every other
state t’ instead of ‘every inequivalent state t’.

Example 8. For the machine in Figure 2.1, we note that state s0 and s2 are separated
by the sequence aa (but not by any shorter sequence). In fact, the sequence aa is an
UIO for state s0 since it is the only state outputting 10 on that input. However, state
s2 has no UIO: If the sequence were to start with b or c, state s3 and s4 respectively
have equal transition, which makes it impossible to separate those states after the first
symbol. If it starts with an a, states s3 and s4 are swapped and we make no progress
in distinguishing these states from s2. Since s2 has no UIO, the machine as a whole
does not admit a DS.

In this example, all other states actually have UIOs. For the states s0, s1, s3 and s4,
we can pick the sequences aa, a, c and ac respectively. In order to separate s2 from
the other state, we have to pick multiple sequences. For instance, the set {aa, ac, c}
will separate s2 from all other states.

FSM-based Test Methods 23

1.4 Sets of separating sequences

As the example shows, we need sets of sequences and sometimes even sets of sets of
sequences – called families.8

Definition 9. We define the following kinds of sets of sequences. We require that all
sets are prefix-closed, however, we only show the maximal sequences in examples.9
– A set of sequences W is a called a characterisation set if it contains a separating

sequence for each pair of inequivalent states inM.
– A state identifier for a state s ∈ M is a setWs such that for every inequivalent t ∈ M

a separating sequence for s and t exists inWs.
– A set of state identifiers {Ws}s is harmonised if Ws ∩ Wt contains a separating

sequence for inequivalent states s and t. This is also called a separating family.

A state identifierWs will be used to test against a single state. In contrast to a char-
acterisation set, it only include sequences which are relevant for s. The property of
being harmonised might seem a bit strange. This property ensures that the same tests
are used for different states. This extra consistency within a test suite is necessary for
some test methods. We return to this notion in more detail in Example 22.

Wemay obtain a characterisation set by simply considering every pair of states and
look for a difference. However, it turns out a harmonised set of state identifiers exists
for every machine and this can be constructed very efficiently (Chapter 4). From a
set of state identifiers we may obtain a characterisation set by taking the union of all
those sets.

Example 10. As mentioned before, state s2 from Figure 2.1 has a state identifier
{aa, ac, b}. In fact, this set is a characterisation set for the whole machine. Since the
other states have UIOs, we can pick singleton sets as state identifiers. For example,
state s0 has the UIO aa, so a state identifier for s0 isW0 = {aa}. Similarly, we can take
W1 = {a} andW3 = {c}. But note that such a family will not be harmonised since the
sets {a} and {c} have no common separating sequence.

One more type of state identifier is of our interest: the adaptive distinguishing sequence.
It it the strongest type of state identifier, and as a result not many machines have
one. Like DSs, adaptive distinguishing sequences can identify a state using a single
word. We give a slightly different (but equivalent) definition than the one of Lee and
Yannakakis (1994).

Definition 11. A separating family ℋ is an adaptive distinguishing sequence (ADS) if
each setmax(Hs) is a singleton.

8 A family is often written as {Xs}s∈M or simply {Xs}s, meaning that for each state s ∈ Mwe have a set Xs.
9 Taking these sets to be prefix-closed makes many proofs easier.

24 Chapter 2

It is called an adaptive sequence, since it has a tree structure which depends on the
output of the machine. To see this tree structure, consider the first symbols of each of
the sequences in the family. Since the family is harmonised and each set is essentially
given by a single word, there is only one first symbol. Depending on the output after
the first symbol, the sequence continues.

Example 12. In Figure 2.3 we see a machine with an ADS. The ADS is given as
follows:

H0 = {aba} H1 = {aaba} H2 = {aba} H3 = {aaba}

Note that all sequences start with a. This already separates s0, s2 from s1, s3. To
further separate the states, the sequences continues with either a b or another a. And
so on.

s0 s1

s2s3

a/0, b/0

a/1

a/0, b/0

a/1,
b/0

b/0
a

b

a

s2 s0

a

b

a

s1 s3

0 1

0

0 1

0

0

0 1

(a) (b)

Figure 2.3 (a): A Mealy machine with an ADS and (b): the tree structure
of this ADS.

Given an ADS, there exists an UIO for every state. The converse – if every state has
an UIO, then the machine admits an ADS – does not hold. The machine in Figure 2.1
admits no ADS, since s2 has no UIO.

1.5 Partial equivalence

Definition 13. We define the following notation.
– Let W be a set of sequences. Two states x, y are W-equivalent, written x ∼W y, if

λ(x,w) = λ(y,w) for all w ∈ W.
– Let 𝒲 be a family. Two states x, y are 𝒲-equivalent, written x ∼𝒲 y, if λ(x,w) =

λ(y,w) for all w ∈ Wx ∩Wy.

FSM-based Test Methods 25

The relation ∼W is an equivalence relation andW ⊆ V implies that V separates more
states thanW, i.e., x ∼V y ⟹ x ∼W y. Clearly, if two states are equivalent (i.e., s ∼ t),
then for any setWwe have s ∼W t.

Lemma 14. The relations ∼W and ∼𝒲 can be used to define characterisation sets and
separating families. Concretely:
– W is a characterisation set if and only if for all s, t inM, s ∼W t implies s ∼ t.
– 𝒲 is a separating family if and only if for all s, t inM, s ∼𝒲 t implies s ∼ t.

Proof.
– W is a characterisation set by definition means s ̸∼ t ⟹ s ̸∼W t asW contains a

separating sequence (if it exists at all). This is equivalent to s ∼W t ⟹ s ∼ t.
– Let 𝒲 be a separating family and s ̸∼ t. Then there is a sequence w ∈ Ws ∩ Wt

such that λ(s,w) ≠ λ(t,w), i.e., s ̸∼𝒲 t. We have shown s ̸∼ t ⟹ s ̸∼𝒲 t, which is
equivalent to s ∼𝒲 t ⟹ s ∼ t. The converse is proven similarly. □

1.6 Access sequences

Besides sequences which separate states, we also need sequences which brings a
machine to specified states.

Definition 15. An access sequence for s is a word w such that δ(s0, w) = s. A set P
consisting of an access sequence for each state is called a state cover. If P is a state cover,
then the set {pa | p ∈ P, a ∈ I} is called a transition cover.

1.7 Constructions on sets of sequences

In order to define a test suite modularly, we introduce notation for combining sets of
words. For sets of words X and Y, we define
– their concatenation X ⋅ Y = {xy | x ∈ X, y ∈ Y},
– iterated concatenation X0 = {ϵ} and Xn+1 = X ⋅ Xn, and
– bounded concatenation X≤n = ⋃i≤n Xi.

On families we define
– flattening: ⋃𝒳 = {x | x ∈ Xs, s ∈ S},
– union: 𝒳 ∪ 𝒴 is defined point-wise: (𝒳 ∪ 𝒴)s = Xs ∪ Ys,
– concatenation10: X ⊙ 𝒴 = {xy | x ∈ X, y ∈ Yδ(s0,x)}, and
– refinement: 𝒳; 𝒴 defined by11

10 We will often see the combination P ⋅ I ⊙ 𝒳, this should be read as (P ⋅ I) ⊙ 𝒳.
11 We use the convention that ∩ binds stronger than ∪. In fact, all the operators here bind stronger than ∪.

26 Chapter 2

(𝒳; 𝒴)s = Xs ∪ Ys∩ ∪
s∼𝒳t
s̸∼𝒴t

Yt.

The latter construction is new and will be used to define a hybrid test generation
method in Section 3. It refines a family 𝒳, which need not be separating, by including
sequences from a second family 𝒴. It only adds those sequences to states if 𝒳 does not
distinguish those states. This is also the reason behind the ;-notation: first the tests
from 𝒳 are used to distinguish states, and then for the remaining states 𝒴 is used.

Lemma 16. For all families 𝒳 and 𝒴:
– 𝒳;𝒳 = 𝒳,
– 𝒳; 𝒴 = 𝒳, whenever 𝒳 is a separating family, and
– 𝒳; 𝒴 is a separating family whenever 𝒴 is a separating family.

Proof. For the first item, note that there are no states t such that s ∼𝒳 t and s ̸∼𝒳 t.
Consequently, the union is empty, and the expression simplifies to

(𝒳; 𝒳)s = Xs ∪ (Xs ∩ ∅) = Xs.

If 𝒳 is a separating family, then the only t for which s ∼𝒳 t hold are t such that s ∼ t
(Lemma 14). But s ∼ t is ruled out by s ̸∼𝒴 t, and again so

(𝒳; 𝒴)s = Xs ∪ (Ys ∩ ∅) = Xs.

For the last item, suppose that s ∼𝒳;𝒴 t. Then s and t agree on every sequence in
(𝒳; 𝒴)s ∩ (𝒳; 𝒴)t. We distinguish two cases:
– Suppose s ∼𝒳 t, then Ys ∩ Yt ⊆ (𝒳; 𝒴)s ∩ (𝒳; 𝒴)t. And so s and t agree on Ys ∩ Yt,

meaning s ∼𝒴 t. Since 𝒴 is a separating family, we have s ∼ t.
– Suppose s ̸∼𝒳 t. This contradicts s ∼𝒳;𝒴 t, since Xs ∩ Xt ⊆ (𝒳; 𝒴)s ∩ (𝒳; 𝒴)t.
We conclude that s ∼ t. This proves that 𝒳; 𝒴 is a separating family. □

2 Test generation methods
In this section, we review the classical conformance testing methods: the W, Wp, UIO,
UIOv, HSI, ADS methods. At the end of this section, we construct the test suites for
the running example. Our hybrid ADS method uses a similar construction.

There are many more test generation methods. Literature shows, however, that
not all of them are complete. For example, the method by Bernhard (1994) is falsified
by Petrenko (1997), and the UIO-method from Sabnani and Dahbura (1988) is shown
to be incomplete by Chan, et al. (1989). For that reason, completeness of the correct
methods is shown in Theorem 26. The proof is general enough to capture all the
methods at once. We fix a state cover P throughout this section and take the transition
cover Q = P ⋅ I.

FSM-based Test Methods 27

2.1 W-method (Chow, 1978 and Vasilevskii, 1973)

After the work of Moore (1956), it was unclear whether a test suite of polynomial
size could exist. He presented a finite test suite which was complete, however it was
exponential in size. Both Chow (1978) and Vasilevskii (1973) independently prove
that test suites of polynomial size exist.12 The W-method is a very structured test suite
construction. It is called the W-method as the characterisation set is often calledW.

Definition 17. Given a characterisation setW, we define the W test suite as

TW = (P ∪ Q) ⋅ I≤k ⋅ W.

This – and all following methods – tests the machine in two phases. For simplicity, we
explain these phases when k = 0. The first phase consists of the tests P ⋅ W and tests
whether all states of the specification are (roughly) present in the implementation.
The second phase is Q ⋅W and tests whether the successor states are correct. Together,
these two phases put enough constraints on the implementation to know that the
implementation and specification coincide (provided that the implementation has no
more states than the specification).

2.2 The Wp-method (Fujiwara, et al., 1991)

Fujiwara, et al. (1991) realised that one needs fewer tests in the second phase of the
W-method. Since we already know the right states are present after phase one, we
only need to check if the state after a transition is consistent with the expected state.
This justifies the use of state identifiers for each state.

Definition 18. Let𝒲 be a family of state identifiers. The Wp test suite is defined as

TWp = P ⋅ I≤k ⋅ ∪𝒲 ∪ Q ⋅ I≤k ⊙𝒲.

Note that ⋃𝒲 is a characterisation set as defined for the W-method. It is needed for
completeness to test states with the whole set ⋃𝒲. Once states are tested as such, we
can use the smaller setsWs for testing transitions.

2.3 The HSI-method (Luo, et al., 1995 and Petrenko, et al., 1993)

The Wp-method in turn was refined by Luo, et al. (1995) and Petrenko, et al. (1993).
They make use of harmonised state identifiers, allowing to take state identifiers in the
initial phase of the test suite.

Definition 19. Letℋ be a separating family. We define the HSI test suite by

12 More precisely: the size of TW is polynomial in the size of the specification for each fixed k.

28 Chapter 2

THSI = (P ∪ Q) ⋅ I≤k ⊙ℋ.

Our hybrid ADS method is an instance of the HSI-method as we define it here. How-
ever, Luo, et al. (1995) and Petrenko, et al. (1993) describe the HSI-method together
with a specific way of generating the separating families. Namely, the set obtained by
a splitting tree with shortest witnesses. The hybrid ADS method does not refine the
HSI-method defined in the more restricted sense.

2.4 The ADS-method (Lee & Yannakakis, 1994)

As discussed before, when a Mealy machine admits a adaptive distinguishing se-
quence, only a single test has to be performed for identifying a state. This is exploited
in the ADS-method.

Definition 20. Let 𝒵 be an adaptive distinguishing sequence. The ADS test suite is
defined as

TADS = (P ∪ Q) ⋅ I≤k ⊙ 𝒵.

2.5 The UIOv-method (Chan, et al., 1989)

Some Mealy machines which do not admit an adaptive distinguishing sequence, may
still admit state identifiers which are singletons. These are exactly UIO sequences and
gives rise to the UIOv-method. In a way this is a generalisation of the ADS-method,
since the requirement that state identifiers are harmonised is dropped.

Definition 21. Let 𝒰 = {a single UIO for s}s∈S be a family of UIO sequences, the
UIOv test suite is defined as

TUIOv = P ⋅ I≤k ⋅ ∪𝒰 ∪ Q ⋅ I≤k ⊙𝒰.

One might think that using a single UIO sequence instead of the set ⋃𝒰 to verify the
state is enough. In fact, this idea was used for the UIO-method which defines the test
suite (P ∪ Q) ⋅ I≤k ⊙𝒰. The following is a counterexample, due to Chan, et al. (1989),
to such conjecture.

Example 22. The Mealy machines in Figure 2.4 shows that UIO-method does not
define a 3-complete test suite. Take for example the UIOs u0 = aa, u1 = a,u2 = ba for
the states s0, s1, s2 respectively. The test suite then becomes {aaaa, abba, baaa, bba}
and the faulty implementation passes this suite. This happens because the sequence
u2 is not an UIO in the implementation, and the state s′2 simulates both UIOs u1 and
u2. Hence we also want to check that a state does not behave as one of the other states,
and therefore we use ⋃𝒰. With the same UIOs as above, the resulting UIOv test suite
for the specification in Figure 2.4 is {aaaa, aba, abba, baaa, bba} of size 23. (Recall
that we also count resets when measuring the size.)

FSM-based Test Methods 29

s0

s1

s2

a/0

b/1

a/1 b/1
a/0

b/1

s′0

s′1

s′2

a/0

b/1

a/1

b/1

a/0

b/1

Specification Implementation

Figure 2.4 An example where the UIO-method is not complete.

2.6 All test suites for Figure 2.1

Let us compute all the previous test suites on the specification in Figure 2.1. We will
be testing without extra states, i.e., we construct 5-complete test suites. We start by
defining the state and transition cover. For this, we take all shortest sequences from
the initial state to the other states. This state cover is depicted in Figure 2.5. The
transition cover is simply constructed by extending each access sequence with another
symbol.

P = {ϵ, a, aa, b, ba}

Q = P ⋅ I = {a, b, c, aa, ab, ac, aaa, aab, aac, ba, bb, bc, baa, bab, bac}

s0

s1

s2

s3

s4

ϵ

a/1

b/0

a/0 a/1

c/0

b/0, c/0

b/0, c/0a/1

a/1

b/0 c/1

b/0

c/0

Figure 2.5 A state cover for the specification from Figure 2.1.

As shown earlier, the set W = {aa, ac, c} is a characterisation set. The W-method,
which simply combines P ∪ Q withW, gives the following test suite of size 169:

TW = { aaaaa, aaaac, aaac, aabaa, aabac, aabc, aacaa,
aacac, aacc, abaa, abac, abc, acaa, acac, acc, baaaa,
baaac, baac, babaa, babac, babc, bacaa, bacac, bacc,
bbaa, bbac, bbc, bcaa, bcac, bcc, caa, cac, cc }

30 Chapter 2

With the Wp-method we get to choose a different state identifier per state. Since many
states have an UIO, we can use them as state identifiers. This defines the following
family𝒲:

W0 = {aa} W1 = {a} W2 = {aa, ac, c} W3 = {c} W4 = {ac}

For the first part of the Wp test suite we need ⋃𝒲 = {aa, ac, c}. For the second part,
we only combine the sequences in the transition cover with the corresponding suffixes.
All in all we get a test suite of size 75:

TWp = { aaaaa, aaaac, aaac, aabaa, aacaa, abaa,
acaa, baaac, baac, babaa, bacc, bbac, bcaa, caa }

For the HSI-method we need a separating familyℋ. We pick the following sets:

H0 = {aa, c} H1 = {a} H2 = {aa, ac, c} H3 = {a, c} H4 = {aa, ac, c}

(We repeat that these sets are prefix-closed, butwe only show themaximal sequences.)
Note that these sets are harmonised, unlike the family𝒲. For example, the separating
sequence a is contained in both H1 and H3. This ensures that we do not have to con-
sider⋃ℋ in the first part of the test suite. When combining thiswith the corresponding
prefixes, we obtain the HSI test suite of size 125:

THSI = { aaaaa, aaaac, aaac, aabaa, aabc, aacaa, aacc,
abaa, abc, acaa, acc, baaaa, baaac, baac, babaa,
babc, baca, bacc, bbaa, bbac, bbc, bcaa, bcc, caa, cc }

On this particular example the Wp-method outperforms the HSI-method. The reason
is thatmany states have UIOs andwe picked those to be the state identifiers. In general,
however, UIOs may not exist (and finding them is hard).

The UIO-method and ADS-method are not applicable in this example because
state s2 does not have an UIO.

s′0

s′1

s′2

s′3

s′4

a/1

b/0
c/0

a/0

b/0, c/0

a/1, b/0, c/0

a/1

b/0 c/1

a/1

b/0

c/0

Figure 2.6 A faulty implementation
for the specification in Figure 2.1.

FSM-based Test Methods 31

We can run these test suites on the faulty implementation shown in Figure 2.6. Here,
the a-transition from state s′2 transitions to the wrong target state. It is not an obvious
mistake, since the faulty target s′0 has very similar transitions as s2. Yet, all the test
suites detect this error. When choosing the prefix aaa (included in the transition
cover), and suffix aa (included in the characterisation set and state identifiers for s2),
we see that the specification outputs 10111 and the implementation outputs 10110.
The sequence aaaaa is the only sequence (in any of the test suites here) which detects
this fault.

Alternatively, the a-transition from s′2 would transition to s′4, we need the suffix ac
as aawill not detect the fault. Since the sequences ac is included in the state identifier
for s2, this fault would also be detected. This shows that it is sometimes necessary to
include multiple sequences in the state identifier.

Another approach to testing would be to enumerate all sequences up to a certain
length. In this example, we need sequences of at least length 5. Consequently, the test
suite contains 243 sequences and this boils down to a size of 1458. Such a brute-force
approach is not scalable.

3 Hybrid ADS method
In this section, we describe a new test generation method for Mealy machines. Its
completeness will be proven in Theorem 26, together with completeness for all meth-
ods defined in the previous section. From a high level perspective, the method uses
the algorithm by Lee and Yannakakis (1994) to obtain an ADS. If no ADS exists, their
algorithm still provides some sequences which separates some inequivalent states.
Our extension is to refine the set of sequences by using pairwise separating sequences.
Hence, this method is a hybrid between the ADS-method and HSI-method.

The reason we do this is the fact that the ADS-method generally constructs small
test suites as experiments by Dorofeeva, et al. (2010) suggest. The test suites are small
since an ADS can identify a state with a single word, instead of a set of words which
is generally needed. Even if the ADS does not exist, using the partial result of Lee and
Yannakakis’ algorithm can reduce the size of test suites.

We will now see the construction of this hybrid method. Instead of manipulating
separating families directly, we use a splitting tree. This is a data structure which is
used to construct separating families or adaptive distinguishing sequences.

Definition 23. A splitting tree (forM) is a rooted tree where each node u has
– a non-empty set of states l(u) ⊆ M, and
– if u is not a leaf, a sequence σ(u) ∈ I∗.
We require that if a node u has children C(u) then
– the sets of states of the children ofu partition l(u), i.e., the set P(u) = {l(v) | v ∈ C(u)}

is a non-trivial partition of l(u), and

32 Chapter 2

– the sequence σ(u) witnesses the partition P(u), meaning that for all p, q ∈ P(u) we
have p = q iff λ(s, σ(u)) = λ(t, σ(u)) for all s ∈ p, t ∈ q.

A splitting tree is called complete if all inequivalent states belong to different leaves.

Efficient construction of a splitting tree is described inmore detail in Chapter 4. Briefly,
the splitting tree records the execution of a partition refinement algorithm (such as
Moore’s or Hopcroft’s algorithm). Each non-leaf node encodes a split together with
a witness, which is a separating sequence for its children. From such a tree we can
construct a state identifier for a state by locating the leaf containing that state and
collecting all the sequences you read when traversing to the root.

For adaptive distinguishing sequences an additional requirement is put on the
splitting tree: for each non-leaf node u, the sequence σ(u) defines an injective map
x ↦ (δ(x, σ(u)), λ(x, σ(u))) on the set l(u). Lee and Yannakakis (1994) call such splits
valid. Figure 2.7 shows both valid and invalid splits. Validity precisely ensures that
after performing a split, the states are still distinguishable. Hence, sequences of such
splits can be concatenated.

s0, s1, s2, s3, s4
a

s0, s2, s3, s4
c

s0, s2, s4
aa

s2, s4
ac

s1

s3

s0

s2 s4

Figure 2.7 A complete splitting tree
with shortest witnesses for the specifi-
cation of Figure 2.1. Only the splits a,
aa, and ac are valid.

The following lemma is a result of Lee and Yannakakis (1994).

Lemma 24. A complete splitting tree with only valid splits exists if and only if there
exists an adaptive distinguishing sequence.

Our method uses the exact same algorithm as the one by Lee and Yannakakis. How-
ever, we also apply it in the casewhen the splitting treewith valid splits is not complete
(and hence no adaptive distinguishing sequence exists). Their algorithm still produces
a family of sets, but is not necessarily a separating family.

FSM-based Test Methods 33

In order to recover separability, we refine that family. Let 𝒵′ be the result of Lee
and Yannakakis’ algorithm (to distinguish from their notation, we add a prime) and
letℋ be a separating family extracted from an ordinary splitting tree. The hybrid ADS
family is defined as 𝒵′;ℋ, and can be computed as sketched in Algorithm 2.1 (the
algorithm works on splitting trees instead of separating families). By Lemma 16 we
note the following: in the best case this family is an adaptive distinguishing sequence;
in the worst case it is equal toℋ; and in general it is a combination of the two families.
In all cases, the result is a separating family becauseℋ is.

Require: A Mealy machineM
Ensure: A separating family Z

1 T1 ← splitting tree for Moore’s minimisation algorithm
2 T2 ← splitting tree with valid splits (see Lee & Yannakakis, 1994)
3 𝒵′ ← (incomplete) family constructed from T2
4 for all inequivalent states s, t in the same leaf of T2 do
5 u ← lca(T1, s, t)
6 Zs ← Z′s ∪ {σ(u)}
7 Zt ← Z′t ∪ {σ(u)}
8 end for
9 return Z

Algorithm 2.1 Obtaining the hybrid separating family 𝒵′;ℋ

With the hybrid family we can define the test suite as follows. Itsm-completeness is
proven in Section 5.

Definition 25. Let P be a state cover, 𝒵′ be a family of sets constructed with the Lee
and Yannakakis algorithm, andℋ be a separating family. The hybrid ADS test suite is

Th-ADS = (P ∪ Q) ⋅ I≤k ⊙ (𝒵′;ℋ).

3.1 Example

In the figure we see the (unique) result of Lee and Yannakakis’ algorithm. We note
that the states s2, s3, s4 are not split, so we need to refine the family for those states.

We take the separating family ℋ from before. From the incomplete ADS in Fig-
ure 2.8b above we obtain the family 𝒵′. These families and the refinement 𝒵′;ℋ are
given below.

34 Chapter 2

s0, s1, s2, s3, s4
a

s0, s2, s3, s4
aa

s1

s0 s2, s3, s4

a

s1 a

s0 s2, s3, s4

0 1

0 1

(a) (b)

Figure 2.8 (a): Largest splitting treewith only valid splits for Figure 2.1.
(b): Its incomplete adaptive distinguishing tree.

H0 = {aa, c} Z′0 = {aa} (Z′; H)0 = {aa}
H1 = {a} Z′1 = {a} (Z′; H)1 = {a}
H2 = {aa, ac, c} Z′2 = {aa} (Z′; H)2 = {aa, ac, c}
H3 = {a, c} Z′3 = {aa} (Z′; H)3 = {aa, c}
H4 = {aa, ac, c} Z′4 = {aa} (Z′; H)4 = {aa, ac, c}

With the separating family 𝒵′;ℋ we obtain the following test suite of size 96:

Th-ADS = { aaaaa, aaaac, aaac, aabaa, aacaa, abaa, acaa,
baaaa, baaac, baac, babaa, bacaa, bacc, bbaa, bbac,
bbc, bcaa, caa }

We note that this is indeed smaller than the HSI test suite. In particular, we have a
smaller state identifier for s0: {aa} instead of {aa, c}. As a consequence, there are less
combinations of prefixes and suffixes. We also observe that one of the state identifiers
grew in length: {aa, c} instead of {a, c} for state s3.

3.2 Implementation

All the algorithms concerning the hybrid ADS-method have been implemented and
can be found at https://github.com/Jaxan/hybrid-ads. We note that Algorithm 2.1 is
implemented a bit more efficiently, as we can walk the splitting trees in a particular or-
der. For constructing the splitting trees in the first place, we use Moore’s minimisation
algorithm and the algorithms by Lee and Yannakakis (1994). We keep all relevant
sets prefix-closed by maintaining a trie data structure. A trie data structure also allows
us to immediately obtain the set of maximal tests only.

3.3 Randomisation

Many constructions of the test suite generation can be randomised. There may exist
many shortest access sequences to a state and we can randomly pick any. Also in the

https://github.com/Jaxan/hybrid-ads

FSM-based Test Methods 35

construction of state identifiers many steps in the algorithm are non-deterministic: the
algorithm may ask to find any input symbol which separates a set of states. The tool
randomises many such choices. We have noticed that this can have a huge influence
on the size of the test suite. However, a decent statistical investigation still lacks at the
moment.

In many of the applications such as learning, no bound on the number of states of
the SUT is known. In such cases it is possible to randomly select test cases from an
infinite test suite. Unfortunately, we lose the theoretical guarantees of completeness
with random generation. Still, as we will see in Chapter 3, this can work really well.
We can randomly test cases as follows. In the above definition for the hybrid ADS
test suite we replace I≤k by I∗ to obtain an infinite test suite. Then we sample tests as
follows:
1. sample an element p from P uniformly,
2. sample a word w from I∗ with a geometric distribution, and
3. sample uniformly from (𝒵′;ℋ)s for the state s = δ(s0, pw).

4 Overview
We give an overview of the aforementioned test methods. We classify them in two
directions,
– whether they use harmonised state identifiers or not and
– whether it used singleton state identifiers or not.

Theorem 26. AssumeM to be minimal, reachable, and of size n. The following test
suites are all n + k-complete:

Arbitrary Harmonised
Many / pairwise Wp HSI

P ⋅ I≤k ⋅ ⋃𝒲 ∪ Q ⋅ I≤k ⊙𝒲 (P ∪ Q) ⋅ I≤k ⊙ℋ

Hybrid Hybrid ADS
(P ∪ Q) ⋅ I≤k ⊙ (𝒵′;ℋ)

Single / global UIOv ADS
P ⋅ I≤k ⋅ ⋃𝒰 ∪ Q ⋅ I≤k ⊙𝒰 (P ∪ Q) ⋅ I≤k ⊙ 𝒵

Proof. See Corollary 33 and 35. □

Each of the methods in the right column can be written simpler as P ⋅ I≤k+1⊙ℋ, since
Q = P ⋅ I. This makes them very easy to implement.

It should be noted that the ADS-method is a specific instance of the HSI-method
and similarly the UIOv-method is an instance of the Wp-method. What is generally

36 Chapter 2

meant by the Wp-method and HSI-method is the above formula together with a
particular way to obtain the (harmonised) state identifiers.

We are often interested in the size of the test suite. In the worst case, all methods
generate a test suite with a size in 𝒪(pn3) and this bound is tight (Vasilevskii, 1973).
Nevertheless we expect intuitively that the right column performs better, as we are
using a more structured set (given a separating family for the HSI-method, we can
always forget about the common prefixes and apply theWp-method, which will never
be smaller if constructed in this way). Also we expect the bottom row to perform
better as there is a single test for each state. Small experimental results confirm this
intuition (Dorofeeva, et al., 2010).

On the example in Figure 2.1, we computed all applicable test suites in Sections 2.6
and 3.1. The UIO and ADS methods are not applicable. For the W, Wp, HSI and
hybrid ADS methods we obtained test suites of size 169, 75, 125 and 96 respectively.

5 Proof of completeness
In this section, we will prove n-completeness of the discussed test methods. Before we
dive into the proof, we give some background on the proof-principle of bisimulation.
The original proofs of completeness often involve an inductive argument (on the
length of words) inlined with arguments about characterisation sets. This can be hard
to follow and so we prefer a proof based on bisimulations, which defers the inductive
argument to a general statement about bisimulation. Many notions of bisimulation
exist in the theory of labelled transition systems, but for Mealy machines there is just
one simple definition. We give the definition and the main proof principle, all of
which can be found in a paper by Rutten (1998).

Definition 27. LetM be aMealy machine. A relation R ⊆ S×S is called a bisimulation
if for every (s, t) ∈ Rwe have
– equal outputs: λ(s, a) = λ(t, a) for all a ∈ I, and
– related successor states: (δ(s, a), δ(t, a)) ∈ R for all a ∈ I.

Lemma 28. If two states s, t are related by a bisimulation, then s ∼ t.13

We use a slight generalisation of the bisimulation proof technique, called bisimulation
up-to. This allows one to give a smaller set R which extends to a bisimulation. A good
introduction of these up-to techniques is given by Bonchi and Pous (2015) or the thesis
of Rot (2015). In our case we use bisimulation up-to ∼-union. The following lemma
can be found in the given references.

13 The converse – which we do not need here – also holds, as ∼ is a bisimulation.

FSM-based Test Methods 37

Definition 29. LetM be aMealy machine. A relation R ⊆ S×S is called a bisimulation
up-to ∼-union if for every (s, t) ∈ Rwe have
– equal outputs: λ(s, a) = λ(t, a) for all a ∈ I, and
– related successor states: (δ(s, a), δ(t, a)) ∈ R or δ(s, a) ∼ δ(t, a) for all a ∈ I.

Lemma 30. Any bisimulation up-to ∼-union is contained in a bisimulation.

We fix a specification M which has a minimal representative with n states and an
implementationM′ with at most n + k states. We assume that all states are reachable
from the initial state in both machines (i.e., both are connected).

The next proposition gives sufficient conditions for a test suite of a certain shape
to be complete. We then prove that these conditions hold for the test suites in this
chapter.

Proposition 31. Let𝒲 and𝒲′ be two families of words and P a state cover forM.
Let T = P ⋅ I≤k ⊙𝒲 ∪ P ⋅ I≤k+1 ⊙𝒲′ be a test suite. If
1. for all x, y ∈ M : x ∼Wx∩Wy y implies x ∼ y,
2. for all x, y ∈ M and z ∈ M′: x ∼Wx z and z ∼W′y y implies x ∼ y, and
3. the machinesM andM′ agree on T,
thenM andM′ are equivalent.

Proof. First, we prove that P ⋅ I≤k reaches all states in M′. For p, q ∈ P and x =
δ(s0, p), y = δ(s0, q) such that x ̸∼Wx∩Wy y, we also have δ′(s′0, p) ̸∼Wx∩Wy δ′(s′0, q) in
the implementationM′. By (1) this means that there are at least n different behaviours
inM′, hence at least n states.

Now n states are reached by the previous argument (using the set P). By assump-
tionM′ has at most k extra states. If those extra states are reachable, they are reachable
from an already visited state in at most k steps. So we can reach all states ofM′ by
using I≤k after P.

Second, we show that the reached states are bisimilar. Define the relation R =
{(δ(s0, p), δ′(s′0, p)) | p ∈ P ⋅ I≤k}. Note that for each (s, i) ∈ Rwe have s ∼Ws i. For each
state i ∈ M′ there is a state s ∈ M such that (s, i) ∈ R, since we reach all states in both
machines by P ⋅ I≤k. We will prove that this relation is in fact a bisimulation up-to
∼-union.

For output, we note that (s, i) ∈ R implies λ(s, a) = λ′(i, a) for all a, since the
machines agree on P ⋅ I≤k+1. For the successors, let (s, i) ∈ R and a ∈ I and consider
the successors s2 = δ(s, a) and i2 = δ′(i, a). We know that there is some t ∈ M with
(t, i2) ∈ R. We also know that we tested i2 with the setWt. So we have:

s2 ∼W′s2
i2 ∼Wt t.

By the second assumption, we conclude that s2 ∼ t. So s2 ∼ t and (t, i) ∈ R, which
means that R is a bisimulation up-to ∼-union. Moreover, R contains the pair (s0, s′0).
By using Lemmas 30 and 28, we conclude that the initial s0 and s′0 are equivalent. □

38 Chapter 2

Before we show that the conditions hold for the test methods, we reflect on the above
proof first. This proof is very similar to the completeness proof by Chow (1978).14 In
the first part we argue that all states are visited by using some sort of counting and
reachability argument. Then in the second part we show the actual equivalence. To the
best of the authors knowledge, this is firstm-completeness proof which explicitly uses
the concept of a bisimulation. Using a bisimulation allows us to slightly generalise
and use bisimulation up-to ∼-union, dropping the the often-assumed requirement
thatM is minimal.

Lemma 32. Let 𝒲′ be a family of state identifiers for M. Define the family 𝒲 by
Ws = ⋃𝒲′. Then the conditions (1) and (2) in Proposition 31 are satisfied.

Proof. The first condition we note that Wx ∩ Wy = Wx = Wy, and so x ∼Wx∩Wy y
implies x ∼Wx y, now by definition of state identifier we get x ∼ y.

For the second condition, let x ∼∪𝒲′ z ∼W′y y. Then we note thatW′y ⊆ ⋃W′ and
so we get x ∼W′y z ∼W′y y. By transitivity we get x ∼W′y y and so by definition of state
identifier we get x ∼ y. □

Corollary 33. The W, Wp, and UIOv test suites are n + k-complete.

Lemma 34. Letℋ be a separating family and take𝒲 =𝒲′ = ℋ. Then the conditions
(1) and (2) in Proposition 31 are satisfied.

Proof. Let x ∼Hx∩Hy y, then by definition of separating family x ∼ y. For the second
condition, let x ∼Hx z ∼Hy y. Then we get x ∼Hx∩Hy z ∼Hx∩Hy y and so by transitivity
x ∼Hx∩Hy y, hence again x ∼ y. □

Corollary 35. The HSI, ADS and hybrid ADS test suites are n + k-complete.

6 Related Work and Discussion
In this chapter, we have mostly considered classical test methods which are all based
on prefixes and state identifiers. There are more recent methods which almost fit in
the same framework. We mention the P (Simão & Petrenko, 2010), H (Dorofeeva,
et al., 2005), and SPY (Simão, et al., 2009) methods. The P method construct a test
suite by carefully considering sufficient conditions for a p-complete test suite (here
p ≤ n, where n is the number of states). It does not generalise to extra states, but it
seems to construct very small test suites. The H method is a refinement of the HSI-
method where state identifiers for a testing transitions are reconsidered. (Note that
Proposition 31 allows for a different family when testing transitions.) Last, the SPY

14 In fact, it is also similar to Lemma 4 by Angluin (1987) which proves termination in the L* learning algo-
rithm. This correspondence was noted by Berg, et al. (2005).

FSM-based Test Methods 39

method builds upon theHSI-method and changes the prefixes in order tominimise the
size of a test suite, exploiting overlap in test sequences. We believe that this technique
is independent of the HSI-method and can in fact be applied to all methods presented
in this chapter. As such, the SPY method should be considered as an optimisation
technique, orthogonal to the work in this chapter.

Recently, Hierons and Türker (2015) devise a novel test method which is based
on incomplete distinguishing sequences and is similar to the hybrid ADS method.
They use sequences which can be considered to be adaptive distinguishing sequences
on a subset of the state space. With several of those one can cover the whole state
space, obtaining a m-complete test suite. This is a bit dual to our approach, as our
“incomplete” adaptive distinguishing sequences define a course partition of the com-
plete state space. Our method becomes complete by refining the tests with pairwise
separating sequences.

Some work is put into minimising the adaptive distinguishing sequences them-
selves. Türker and Yenigün (2014) describe greedy algorithms which construct small
adaptive distinguishing sequences. Moreover, they show that finding the minimal
adaptive distinguishing sequence is NP-complete in general, even approximation is
NP-complete. We expect that similar heuristics also exist for the other test methods
and that they will improve the performance. Note that minimal separating sequences
do not guarantee a minimal test suite. In fact, we see that the hybrid ADS method
outperforms the HSI-method on the example in Figure 2.1 since it prefers longer, but
fewer, sequences.

Some of the assumptions made at the start of this chapter have also been chal-
lenged. For non-deterministic Mealy machine, we mention the work of Petrenko and
Yevtushenko (2014). We also mention the work of van den Bos, et al. (2017) and
Simão and Petrenko (2014) for input/output transition systems with the ioco relation.
In both cases, the test suites are still defined in the same way as in this chapter: pre-
fixes followed by state identifiers. However, for non-deterministic systems, guiding
an implementation into a state is harder as the implementation may choose its own
path. For that reason, sequences are often replaced by automata, so that the testing
can be adaptive. This adaptive testing is game-theoretic and the automaton provides
a strategy. This game theoretic point of view is further investigated by van den Bos
and Stoelinga (2018). The test suites generally are of exponential size, depending on
how non-deterministic the systems are.

The assumption that the implementation is resettable is also challenged early on.
If the machine has no reliable reset (or the reset is too expensive), one tests the sys-
tem with a single checking sequence. Lee and Yannakakis (1994) give a randomised
algorithm for constructing such a checking sequence using adaptive distinguishing se-
quences. There is a similarity with the randomised algorithm by Rivest and Schapire
(1993) for learning non-resettable automata. Recently, Groz, et al. (2018) give a
deterministic learning algorithm for non-resettable machines based on adaptive dis-
tinguishing sequences.

40 Chapter 2

Many of the methods described here are benchmarked on small or random Mealy
machines by Dorofeeva, et al. (2010) and Endo and Simão (2013). The benchmarks
are of limited scope, the machine from Chapter 3, for instance, is neither small nor
random. For this reason, we started to collect more realistic benchmarks at http:/
/automata.cs.ru.nl/.

http://automata.cs.ru.nl/
http://automata.cs.ru.nl/

Chapter 3
Applying Automata Learning to Embedded
Control Software

Wouter Smeek
Océ Technologies B.V.

Joshua Moerman
Radboud University

Frits Vaandrager
Radboud University

David N. Jansen
Radboud University

Abstract
Using an adaptation of state-of-the-art algorithms for black-box automata learn-
ing, as implemented in the LearnLib tool, we succeeded to learn a model of the
Engine Status Manager (ESM), a software component that is used in printers
and copiers of Océ. The main challenge that we encountered was that Learn-
Lib, although effective in constructing hypothesis models, was unable to find
counterexamples for some hypotheses. In fact, none of the existing FSM-based
conformance testing methods that we tried worked for this case study. We
therefore implemented an extension of the algorithm of Lee & Yannakakis for
computing an adaptive distinguishing sequence. Even when an adaptive dis-
tinguishing sequence does not exist, Lee & Yannakakis’ algorithm produces
an adaptive sequence that “almost” identifies states. In combination with a
standard algorithm for computing separating sequences for pairs of states, we
managed to verify states with on average 3 test queries. Altogether, we needed
around 60 million queries to learn a model of the ESM with 77 inputs and 3.410
states. We also constructed a model directly from the ESM software and estab-
lished equivalence with the learned model. To the best of our knowledge, this is
the first paper in which active automata learning has been applied to industrial
control software.

This chapter is based on the following publication:
Smeenk, W., Moerman, J., Vaandrager, F. W., & Jansen, D. N. (2015). Applying Au-
tomata Learning to Embedded Control Software. In Formal Methods and Software
Engineering - 17th International Conference on Formal Engineering Methods, ICFEM, Pro-
ceedings. Springer. doi:10.1007/978-3-319-25423-4_5

http://dx.doi.org/10.1007/978-3-319-25423-4_5

42 Chapter 3

Once they have high-level models of the behaviour of software components, software
engineers can construct better software in less time. A key problem in practice, how-
ever, is the construction of models for existing software components, for which no or
only limited documentation is available.

The construction of models from observations of component behaviour can be
performed using regular inference – also known as automata learning (see Angluin,
1987; de la Higuera, 2010; Steffen, et al., 2011). The most efficient such techniques use
the set-up of active learning, illustrated in Figure 3.1, in which a “learner” has the task
to learn a model of a system by actively asking questions to a “teacher”.

Learner Teacher

SUT

MBT tool

Membership Query

Output

Equivalence Query

yes or no with counterexample

Figure 3.1 Active learning of reactive systems.

The core of the teacher is a System Under Test (SUT), a reactive system to which one can
apply inputs and whose outputs one may observe. The learner interacts with the SUT
to infer a model by sending inputs and observing the resulting outputs (“membership
queries”). In order to find out whether an inferred model is correct, the learner may
pose an “equivalence query”. The teacher uses a model-based testing (MBT) tool to
try and answer such queries: Given a hypothesised model, an MBT tool generates a
long test sequence using some conformance testing method. If the SUT passes this
test, then the teacher informs the learner that the model is deemed correct. If the
outputs of the SUT and the model differ, this constitutes a counterexample, which
is returned to the learner. Based on such a counterexample, the learner may then
construct an improved hypothesis. Hence, the task of the learner is to collect data by
interacting with the teacher and to formulate hypotheses, and the task of the MBT
tool is to establish the validity of these hypotheses. It is important to note that it may
occur that an SUT passes the test for an hypothesis, even though this hypothesis is
not valid.

Triggered by various theoretical and practical results, see for instance the work by
Aarts (2014); Berg, et al. (2005); Cassel, et al. (2015); Howar, et al. (2012); Leucker
(2006); Merten, et al. (2012); Raffelt, et al. (2009), there is a fast-growing interest in
automata learning technology. In recent years, automata learning has been applied
successfully, e.g., to regression testing of telecommunication systems (Hungar, et al.,
2003), checking conformance of communication protocols to a reference implementa-
tion (Aarts, et al., 2014), finding bugs in Windows and Linux implementations of TCP

Applying Automata Learning to Embedded Control Software 43

(Fiterău-Broștean, et al., 2014), analysis of botnet command and control protocols
(Cho, et al., 2010), and integration testing (Groz, et al., 2008 and Li, et al., 2006).

In this chapter, we explore whether LearnLib by Raffelt, et al. (2009), a state-of-
the-art automata learning tool, is able to learn a model of the Engine Status Manager
(ESM), a piece of control software that is used in many printers and copiers of Océ.
Software components like the ESM can be found in many embedded systems in one
form or another. Being able to retrieve models of such components automatically is
potentially very useful. For instance, if the software is fixed or enriched with new
functionality, one may use a learned model for regression testing. Also, if the source
code of software is hard to read and poorly documented, one may use a model of the
software for model-based testing of a new implementation, or even for generating an
implementation on a new platform automatically. Using a model checker one may
also study the interaction of the software with other components for which models
are available.

The ESM software is actually well documented, and an extensive test suite exists.
The ESM, which has been implemented using Rational Rose Real-Time (RRRT), is
stable and has been in use for 10 years. Due to these characteristics, the ESM is an
excellent benchmark for assessing the performance of automata learning tools in
this area. The ESM has also been studied in other research projects: Ploeger (2005)
modelled the ESM and other related managers and verified properties based on the
official specifications of the ESM, and Graaf and van Deursen (2007) have checked
the consistency of the behavioural specifications defined in the ESM against the RRRT
definitions.

Learning a model of the ESM turned out to be more complicated than expected.
The top level UML/RRRT statechart from which the software is generated only has
16 states. However, each of these states contains nested states, and in total there are
70 states that do not have further nested states. Moreover, the C++ code contained
in the actions of the transitions also creates some complexity, and this explains why
the minimal Mealy machine that models the ESM has 3.410 states. LearnLib has been
used to learn models with tens of thousands of states by Raffelt, et al. (2009), and
therefore we expected that it would be easy to learn a model for the ESM. However,
finding counterexamples for incorrect hypotheses turned out to be challenging due
to the large number of 77 inputs. The test algorithms implemented in LearnLib, such
as random testing, the W-method by Chow (1978) and Vasilevskii (1973) and the
Wp-method by Fujiwara, et al. (1991), failed to deliver counterexamples within an
acceptable time. Automata learning techniques have been successfully applied to
case studies in which the total number of input symbols is much larger, but in these
cases it was possible to reduce the number of inputs to a small number (less than 10)
using abstraction techniques (Aarts, et al., 2015 and Howar, et al., 2011). In the case of
ESM, use of abstraction techniques only allowed us to reduce the original 156 concrete
actions to 77 abstract actions.

44 Chapter 3

We therefore implemented an extension of an algorithm of Lee and Yannakakis
(1994) for computing adaptive distinguishing sequences. Even when an adaptive
distinguishing sequence does not exist, Lee & Yannakakis’ algorithm produces an
adaptive sequence that “almost” identifies states. In combination with a standard
algorithm for computing separating sequences for pairs of states, wemanaged to verify
states with on average 3 test queries and to learn a model of the ESM with 77 inputs
and 3.410 states. We also constructed a model directly from the ESM software and
established equivalence with the learned model. To the best of our knowledge, this is
the first paper in which active automata learning has been applied to industrial control
software. Preliminary evidence suggests that our adaptation of Lee & Yannakakis’
algorithm outperforms existing FSM-based conformance algorithms.

During recent years most researchers working on active automata learning focused
their efforts on efficient algorithms and tools for the construction of hypothesis models.
Our work shows that if we want to further scale automata learning to industrial
applications, we also need better algorithms for finding counterexamples for incorrect
hypotheses. Following Berg, et al. (2005), ourwork shows that the context of automata
learning provides both new challenges and new opportunities for the application of
testing algorithms. All the models for the ESM case study together with the learning
and testing statistics are available at http://www.mbsd.cs.ru.nl/publications/papers
/fvaan/ESM/, as a benchmark for both the automata learning and testing communities.
It is now also included in the automata wiki at http://automata.cs.ru.nl/.

1 Engine Status Manager
The focus of this article is the Engine Status Manager (ESM), a software component
that is used to manage the status of the engine of Océ printers and copiers. In this
section, the overall structure and context of the ESM will be explained.

1.1 ESRA

The requirements and behaviour of the ESM are defined in a software architecture
called Embedded Software Reference Architecture (ESRA). The components defined
in this architecture are reused in many of the products developed by Océ and form an
important part of these products. This architecture is developed for cut-sheet printers
or copiers. The term cut-sheet refers to the use of separate sheets of paper as opposed
to a continuous feed of paper.

An engine refers to the printing or scanning part of a printer or copier. Other
products can be connected to an engine that pre- or postprocess the paper, for example
a cutter, folder, stacker or stapler.

http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/
http://automata.cs.ru.nl/

Applying Automata Learning to Embedded Control Software 45

Engine Software

External Inter-
face Adapters

Managers

Functions

OS Facilities
and Services

Controller

Figure 3.2 Global overview of the engine software.

Figure 3.2 gives an overview of the software in a printer or copier. The controller
communicates the required actions to the engine software. This includes transport
of digital images, status control, print or scan actions and error handling. The con-
troller is responsible for queuing, processing the actions received from the network
and operators and delegating the appropriate actions to the engine software. The
managers communicate with the controller using the external interface adapters. These
adapters translate the external protocols to internal protocols. The managers manage
the different functions of the engine. They are divided by the different functionalities
such as status control, print or scan actions or error handling they implement. In
order to do this, a manager may communicate with other managers and functions. A
function is responsible for a specific set of hardware components. It translates com-
mands from the managers to the function hardware and reports the status and other
information of the function hardware to the managers. This hardware can for example
be the printing hardware or hardware that is not part of the engine hardware such as
a stapler. Other functionalities such as logging and debugging are orthogonal to the
functions and managers.

1.2 ESM and connected components

The ESM is responsible for the transition from one status of the printer or copier to
another. It coordinates the functions to bring them in the correct status. Moreover, it
informs all its connected clients (managers or the controller) of status changes. Finally,
it handles status transitions when an error occurs.

Figure 3.3 shows the different components to which the ESM is connected. The Er-
ror Handling Manager (EHM), Action Control Manager (ACM) and other clients request
engine statuses. The ESM decides whether a request can be honored immediately, has
to be postponed or ignored. If the requested action is processed the ESM requests the
functions to go to the appropriate status. The EHM has the highest priority and its
requests are processed first. The EHM can request the engine to go into the defect
status. The ACM has the next highest priority. The ACM requests the engine to switch
between running and standby status. The other clients request transitions between the
other statuses, such as idle, sleep, standby and low power. All the other clients have

46 Chapter 3

Error
Handling
Manager

Action
Control
Manager

Other Client

Top Capsule
Engine
Status

Manager

Information
Manager

Function

Figure 3.3 Overviewof themanagers and clients
connected to the ESM.

the same lowest priority. The Top Capsule instantiates the ESM and communicates
with it during the initialisation of the ESM. The Information Manager provides some
parameters during the initialisation.

There are more managers connected to the ESM but they are of less importance
and are thus not mentioned here.

1.3 Rational Rose RealTime

The ESM has been implemented using Rational Rose RealTime (RRRT). In this tool
so-called capsules can be created. Each of these capsules defines a hierarchical statechart
diagram. Capsules can be connected with each other using structure diagrams. Each
capsule contains a number of ports that can be connected to ports of other capsules by
adding connections in the associated structure diagram. Each of these ports specifies
which protocol should be used. This protocol defines which messages may be sent
to and from the port. Transitions in the statechart diagram of the capsule can be
triggered by arriving messages on a port of the capsule. Messages can be sent to
these ports using the action code of the transition. The transitions between the states,
actions and guards are defined in C++ code. From the state diagram, C++ source
files are generated.

The RRRT language and semantics is based on UML (Object Management Group
(OMG), 2004) and ROOM (Selic, et al., 1994). One important concept used in RRRT
is the run-to-completion execution model (Eshuis, et al., 2002). This means that when
a received message is processed, the execution cannot be interrupted by other arriving
messages. These messages are placed in a queue to be processed later.

Applying Automata Learning to Embedded Control Software 47

1.4 The ESM state diagram

startup

idle

goingToStandby

standby

resetting

starting

running

stopping

medium goingToLowPower

lowPower

awakening

defect

sleep

goingToDefect

goingToSleep

power on

power off

Figure 3.4 Top states and transitions of the ESM.

Figure 3.4 shows the top states of the ESM statechart. The statuses that can be re-
quested by the clients and managers correspond to gray states. The other states are
so called transitory states. In transitory states the ESM is waiting for the functions to
report that they have moved to the corresponding status. Once all functions have
reported, the ESM moves to the corresponding status.

The idle status indicates that the engine has started up but that it is still cold
(uncontrolled temperature). The standby status indicates that the engine is warm
and ready for printing or scanning. The running status indicates that the engine is
printing or scanning. The transitions from the overarching state to the goingToSleep
and goingToDefect states indicate that it is possible to move to the sleep or defect
status from any state. In some cases it is possible to awake from sleep status, in other
cases the main power is turned off. The medium status is designed for diagnostics. In
this status the functions can each be in a different status. For example one function is
in standby status while another function is in idle status.

The statechart diagram in Figure 3.4 may seem simple, but it hides many details.
Each of the states has up to 5 nested states. In total there are 70 states that do not
have further nested states. The C++ code contained in the actions of the transitions
is in some cases non-trivial. The possibility to transition from any state to the sleep or
defect state also complicates the learning.

48 Chapter 3

2 Learning the ESM
In order to learn a model of the ESM, we connected it to LearnLib by Merten, et al.
(2011), a state-of-the-art tool for learning Mealy machines developed at the University
of Dortmund. A Mealy machine is a tupleM = (I,O,Q, q0, δ, λ), where
– I is a finite set of input symbols,
– O is a finite set of output symbols,
– Q is a finite set of states,
– q0 ∈ Q is an initial state,
– δ : Q × I → Q is a transition function, and
– λ : Q × I → O is an output function.
The behaviour of a Mealy machine is deterministic, in the sense that the outputs are
fully determined by the inputs. Functions δ and λ are extended to accept sequences
in the standard way. We say that Mealy machines M = (I,O,Q, q0, δ, λ) and M′ =
(I′,O′,Q′, q′0, δ′, λ′) are equivalent if they generate an identical sequence of outputs for
every sequence of inputs, that is, if I = I′ and, for all w ∈ I∗, λ(q0, w) = λ′(q′0, w). If
the behaviour of an SUT is described by a Mealy machineM then the task of LearnLib
is to learn a Mealy machineM′ that is equivalent toM.

2.1 Experimental set-up

A clear interface to the ESM has been defined in RRRT. The ESM defines ports from
which it receives a predefined set of inputs and to which it can send a predefined
set of outputs. However, this interface can only be used within RRRT. In order to
communicate with the LearnLib software a TCP connection was set up. An extra
capsule was created in RRRT which connects to the ports defined by the ESM. This
capsule opened a TCP connection to LearnLib. Inputs and outputs are translated to
and from a string format and sent over the connection. Before eachmembership query,
the learner needs to bring the SUT back to its initial state. In other words, LearnLib
needs a way to reset the SUT.

Some inputs and outputs sent to and from the ESM carry parameters. These para-
meters are enumerations of statuses, or integers bounded by the number of functions
connected to the ESM. Currently, LearnLib cannot handle inputs with parameters;
therefore, we introduced a separate input action for every parameter value. Based on
domain knowledge and discussions with the Océ engineers, we could group some of
these inputs together and reduce the total number of inputs. When learning the ESM
using one function, 83 concrete inputs are grouped into four abstract inputs. When
using two functions, 126 concrete inputs can be grouped. When an abstract input
needs to be sent to the ESM, one concrete input of the represented group is randomly
selected, as in the approach of Aarts, et al. (2015). This is a valid abstraction because
all the inputs in the group have exactly the same behaviour in any state of the ESM.

Applying Automata Learning to Embedded Control Software 49

This has been verified by doing code inspection. No other abstractions were found
during the research. After the inputs are grouped a total of 77 inputs remain when
learning the ESM using 1 function, and 105 inputs remain when using 2 functions.

It was not immediately obvious how to model the ESM by a Mealy machine, since
some inputs trigger no output, whereas other inputs trigger several outputs. In order
to resolve this, we benefited from the run-to-completion execution model used in
RRRT. Whenever an input is sent, all the outputs are collected until quiescence is
detected. Next, all the outputs are concatenated and are sent to LearnLib as a single
aggregated output. In model-based testing, quiescence is usually detected by waiting
for a fixed time-out period. However, this causes the system to be mostly idle while
waiting for the time-out, which is inefficient. In order to detect quiescence faster, we
exploited the run-to-completion executionmodel used by RRRT: wemodified the ESM
to respond to a new low-priority test input with a (single) special output. This test
input is sent after each normal input. Only after the normal input is processed and
all the generated outputs have been sent, the test input is processed and the special
output is generated; upon its reception, quiescence can be detected immediately and
reliably.

2.2 Test selection strategies

In the ESM case study the most challenging problem was finding counterexamples
for the hypotheses constructed during learning.

LearnLib implements several algorithms for conformance testing, one of which is
a random walk algorithm. The random walk algorithm works by first selecting the
length of the test query according to a geometric distribution, cut off at a fixed upper
bound. Each of the input symbols in the test query is then randomly selected from
the input alphabet I from a uniform distribution. In order to find counterexamples,
a specific sequence of input symbols is needed to arrive at the state in the SUT that
differentiates it from the hypothesis. The upper bound for the size of this search
space is |I|n where |I| is the size of the input alphabet used, and n the length of the
counterexample that needs to be found. If this sequence is long the chance of finding
it is small. Because the ESM has many different input symbols to choose from, finding
the correct one is hard. When learning the ESM with 1 function there are 77 possible
input symbols. If for example the length of the counterexample needs to be at least 6
inputs to identify a certain state, then the upper bound on the number of test queries
would be around 2 × 1011. An average test query takes around 1 ms, so it would take
about 7 years to execute these test queries.

Augmented DS-method15. In order to reduce the number of tests, Chow (1978) and
Vasilevskii (1973) pioneered the so called W-method. In their framework a test query

15 This was later called the hybrid ADS-method.

50 Chapter 3

consists of a prefix p bringing the SUT to a specific state, a (random) middle part
m and a suffix s assuring that the SUT is in the appropriate state. This results in a
test suite of the form PI≤kW, where P is a set of (shortest) access sequences, I≤k the
set of all sequences of length at most k, andW is a characterisation set. Classically,
this characterisation set is constructed by taking the set of all (pairwise) separating
sequences. For k = 1 this test suite is complete in the sense that if the SUT passes all
tests, then either the SUT is equivalent to the specification or the SUT has strictly more
states than the specification. By increasing kwe can check additional states.

We tried using the W-method as implemented by LearnLib to find counterex-
amples. The generated test suite, however, was still too big in our learning context.
Fujiwara, et al. (1991) observed that it is possible to let the setW depend on the state
the SUT is supposed to be. This allows us to only take a subset ofWwhich is relevant
for a specific state. This slightly reduces the test suite without losing the power of
the full test suite. This method is known as the Wp-method. More importantly, this
observation allows for generalisations where we can carefully pick the suffixes.

In the presence of an (adaptive) distinguishing sequence one can take W to be
a single suffix, greatly reducing the test suite. Lee and Yannakakis (1994) describe
an algorithm (which we will refer to as the LY algorithm) to efficiently construct
this sequence, if it exists. In our case, unfortunately, most hypotheses did not enjoy
existence of an adaptive distinguishing sequence. In these cases the incomplete result
from the LY algorithm still contained a lot of information which we augmented by
pairwise separating sequences.

I46

I6.0

I10 I11 I10 I10

{7, 106, 1025,

{18, 133

I19 I19

I19 I31.0 I37.3 I9.2
{555}

I19 I31.0 I37.3 I9.2

{856}

{425}

{516}

{1135}

{514}

{597}

{1137}

I9.1 I11 I37.0 I10 I18
{556}

{788} {857}

{465} {563}

O9

O3.3

Q

... O28.0 ... Q

O3.14

Q

130, 1289, 1291}

1287, 1295}

Figure 3.5 A small part of an incomplete distinguishing sequence as produced by
the LY algorithm. Leaves contain a set of possible initial states, inner nodes have input
sequences and edges correspond to different output symbols (of whichwe only drew
some), where Q stands for quiescence.

Applying Automata Learning to Embedded Control Software 51

As an example we show an incomplete adaptive distinguishing sequence for one of
the hypothesis in Figure 3.5. When we apply the input sequence I46 I6.0 I10 I19 I31.0
I37.3 I9.2 and observe outputs O9 O3.3 Q …O28.0, we know for sure that the SUT was
in state 788. Unfortunately, not all paths lead to a singleton set. When for instance
we apply the sequence I46 I6.0 I10 and observe the outputs O9 O3.14 Q, we know for
sure that the SUT was in one of the states 18, 133, 1287 or 1295. In these cases we have
to perform more experiments and we resort to pairwise separating sequences.

We note that this augmented DS-method is in the worst case not any better than
the classical Wp-method. In our case, however, it greatly reduced the test suites.

Once we have our set of suffixes, which we call Z now, our test algorithm works
as follows. The algorithm first exhausts the set PI≤1Z. If this does not provide a
counterexample, we will randomly pick test queries from PI2I∗Z, where the algo-
rithm samples uniformly from P, I2 and Z (if Z contains more that 1 sequence for the
supposed state) and with a geometric distribution on I∗.

Sub-alphabet selection. Using the above method the algorithm still failed to learn
the ESM. By looking at the RRRT-based model we were able to see why the algorithm
failed to learn. In the initialisation phase, the controller gives exceptional behaviour
when providing a certain input eight times consecutively. Of course such a sequence
is hard to find in the above testing method. With this knowledge we could construct
a single counterexample by hand by which means the algorithm was able to learn the
ESM.

In order to automate this process, we defined a sub-alphabet of actions that are
important during the initialisation phase of the controller. This sub-alphabet will be
used a bitmore often than the full alphabet. Wedo this as follows. We start testingwith
the alphabet which provided a counterexample for the previous hypothesis (for the
first hypothesis we take the sub-alphabet). If no counterexample can be found within
a specified query bound, then we repeat with the next alphabet. If both alphabets
do not produce a counterexample within the bound, the bound is increased by some
factor and we repeat all. This method only marginally increases the number of tests.
But it did find the right counterexample we first had to construct by hand.

2.3 Results

Using the learning set-up discussed in Section 2.1 and the test selection strategies
discussed in Section 2.2, a model of the ESM using 1 function could be learned. After
an additional eight hours of testing no counterexample was found and the experiment
was stopped. The following list gives the most important statistics gathered during
the learning:
– The learned model has 3.410 states.
– Altogether, 114 hypotheses were generated.
– The time needed for learning the final hypothesis was 8 h, 26 min, and 19 s.

52 Chapter 3

– 29.933.643 membership queries were posed (on average 35,77 inputs per query).
– 30.629.711 test queries were required (on average 29,06 inputs per query).

3 Verification
To verify the correctness of the model that was learned using LearnLib, we checked
its equivalence with a model that was generated directly from the code.

3.1 Approach

As mentioned already, the ESM has been implemented using Rational Rose RealTime
(RRRT). Thus a statechart representation of the ESM is available. However, we have
not been able to find a tool that translates RRRTmodels toMealymachines, allowing us
to compare the RRRT-basedmodel of the ESMwith the learnedmodel. We considered
several formalisms and tools that were proposed in the literature to flatten statecharts
to state machines. The first one was a tool for hierarchical timed automata (HTA) by
David, et al. (2002). However, we found it hard to translate the output of this tool, a
network of Uppaal timed automata, to aMealy machine that could be compared to the
learned model. The second tool that we considered has been developed by Hansen, et
al. (2010). This tool misses some essential features, for example the ability to assign
new values to state variables on transitions. Finally, we considered a formalism called
object-oriented action systems (OOAS) by Krenn, et al. (2009), but no tools to use
this could be found.

In the end we decided to implement the required model transformations ourselves.
Figure 3.6 displays the different formats for representing models that we used and
the transformations between those formats.

UML
statechart

RRRT

HEFSM

PapyrusUML

RFSM
.xml

Uppaal

Mealy
Machine

.dot

LearnLib

LTS

CADP

Figure 3.6 Formats for representing models and transforma-
tions between formats.

We used the bisimulation checker of CADP by Garavel, et al. (2011) to check the
equivalence of labelled transition system models in .aut format. The Mealy machine
models learned by LearnLib are represented as .dot files. A small script converts

Applying Automata Learning to Embedded Control Software 53

these Mealy machines to labelled transition systems in .aut format. We used the
Uppaal tool by Behrmann, et al. (2006) as an editor for defining extended finite state
machines (EFSM), represented as .xml files. A script developed in the ITALIA project
(http://www.italia.cs.ru.nl/) converts these EFSM models to LOTOS, and then
CADP takes care of the conversion from LOTOS to the .aut format.

The Uppaal syntax is not sufficiently expressive to directly encode the RRRT defin-
ition of the ESM, since this definition makes heavy use of UML (Object Management
Group (OMG), 2004) concepts such as state hierarchy and transitions from composite
states, concepts which are not present in Uppaal. Using Uppaal would force us to
duplicate many transitions and states.

Wedecided tomanually create an intermediate hierarchical EFSM(HEFSM)model
using the UML drawing tool PapyrusUML (Lanusse, et al., 2009). The HEFSM model
closely resembles the RRRT UML model, but many elements used in UML state ma-
chines are left out because they are not needed for modelling the ESM and complicate
the transformation process.

3.2 Model transformations

We explain the transformation from the HEFSM model to the EFSM model using
examples. The transformation is divided into five steps, which are executed in order:
1. combine transitions without input or output signal,
2. transform supertransitions,
3. transform internal transitions,
4. add input signals that do not generate an output, and
5. replace invocations of the next function.

1. Empty transitions. In order to make the model more readable and to make it
easy to model if and switch statements in the C++ code the HEFSM model allows
for transitions without a signal. These transitions are called empty transitions. An
empty transition can still contain a guard and an assignment. However these kinds of
transitions are only allowed on states that only contain empty outgoing transitions.
This was done to make the transformation easy and the model easy to read.

In order to transform a state with empty transitions all the incoming and outgoing
transitions are collected. For each combination of incoming transition a and outgoing
transition b a new transition c is createdwith the source of a as source and the target of
b as target. The guard for transition c evaluates to true if and only if the guard of a and
b both evaluate to true. The assignment of c is the concatenation of the assignment of
a and b. The signal of cwill be the signal of a because b cannot have a signal. Once
all the new transitions are created all the states with empty transitions are removed
together with all their incoming and outgoing transitions.

Figure 3.7 shows an example model with empty transitions and its transformed
version. Each of the incoming transitions from the state B is combined with each of

http://www.italia.cs.ru.nl/

54 Chapter 3

the outgoing transitions. This results into two new transitions. The old transitions
and state B are removed.

A

B

C D

A

C D

OP()

["a==0"] ["a==1"]

["a==0"] ["a==1"]

Figure 3.7 Example of empty transition transformation. On
the left the original version. On the right the transformed ver-
sion.

2. Supertransitions. The RRRT model of the ESM contains many transitions origi-
nating from a composite state. Informally, these supertransitions can be taken in each
of the substates of the composite state if the guard evaluates to true. In order to model
the ESM as closely as possible, supertransitions are also supported in the HEFSM
model.

In RRRT transitions are evaluated from bottom to top. This means that first the
transitions from the leaf state are considered, then transitions from its parent state
and then from its parent’s parent state, etc. Once a transition for which the guard
evaluates to true and the correct signal has been found it is taken. When flattening the
statechart, we modified the guards of supertransitions to ensure the correct priorities.

B

C

IP() ["a==1"]

A
IP() B

C

IP() ["a==1"]

A
IP() ["a!=1"]

IP()

Figure 3.8 Example of supertransition transformation. On the
left the original version. On the right the transformed version.

Figure 3.8 shows an example model with supertransitions and its transformed version.
The supertransition from state A can be taken at each of A’s leaf states B and C. The
transformation removes the original supertransition and creates a new transition at
states B and C using the same target state. For leaf state C this is easy because it does not
contain a transitionwith the input signal IP. In state B the transition to state C would be
taken if a signal IP was processed and the state variable a equals 1. The supertransition
can only be taken if the other transition cannot be taken. This is why the negation of
other the guard is added to the new transition. If the original supertransition is an

Applying Automata Learning to Embedded Control Software 55

internal transition the model needs further transformation after this transformation.
This is described in the next paragraph. If the original supertransition is not an internal
transition the new transitions will have the initial state of A as target.

3. Internal transitions. The ESM model also makes use of internal transitions in
RRRT. Using such a transition the current state does not change. If such a transition
is defined on a composite state it can be taken from all of the substates and return to
the same leaf state it originated from. If defined on a composite state it is thus also
a supertransition. This is also possible in the HEFSM model. In order to transform
an internal transition it is first seen as a supertransition and the above transformation
is applied. Then the target of the transition is simply set to the leaf state it originates
from. An example can be seen in Figure 3.8. If the supertransition from state A is also
defined to be an internal transition the transformed version on the right would need
another transformation. The new transitions that now have the target state A would
be transformed to have the same target state as their current source state.

4. Quiescent transitions. In order to reduce the number of transitions in the HEFSM
model quiescent transitions are added automatically. For every state all the transitions
for each signal are collected in a set T. A new self transition a is added for each signal.
The guard for transition a evaluates to true if and only if none of the guards of the
transactions in T evaluates to true. This makes the HEFSM input enabled without
having to specify all the transitions.

5. The next function. In RRRT it is possible to write the guard and assignment in
C++ code. It is thus possible that the value of a variable changes while an input signal
is processed. In the HEFSM however all the assignments only take effect after the
input signal is processed. In order to simulate this behaviour the next function is used.
This function takes a variable name and evaluates to the value of this variable after
the transition.

3.3 Results
Figure 3.9 shows a visualisation of the learned model that was generated using Gephi
(Bastian, et al., 2009). States are coloured according to the strongly connected compo-
nents. The number of transitions between two states is represented by the thickness of
the edge. The large number of states (3.410) and transitions (262.570) makes it hard
to visualise this model. Nevertheless, the visualisation does provide insight in the
behaviour of the ESM. The three protrusions at the bottom of Figure 3.9 correspond to
deadlocks in themodel. These deadlocks are “error” states that are present in the ESM
by design. According to the Océ engineers, the sequences of inputs that are needed to
drive the ESM into these deadlock states will always be followed by a system power
reset. The protrusion at the top right of the figure corresponds to the initialisation
phase of the ESM. This phase is performed only once and thus only transitions from
the initialisation cluster to the main body of states are present.

56 Chapter 3

Figure 3.9 Final model of the ESM.

During the construction of the RRRT-based model, the ESM code was thoroughly
inspected. This resulted in the discovery of missing behaviour in one transition of the
ESM code. An Océ software engineer confirmed that this behaviour is a (minor) bug,
which will be fixed. We have verified the equivalence of the learned model and the
RRRT-based model by using CADP (Garavel, et al., 2011).

4 Conclusions and Future Work
Using an extension of algorithm by Lee and Yannakakis (1994) for adaptive distin-
guishing sequences, we succeeded to learn a Mealy machine model of a piece of
widely used industrial control software. Our extension of Lee & Yannakakis’ algo-
rithm is rather obvious, but nevertheless appears to be new. Preliminary evidence
suggests that it outperforms existing conformance testing algorithms. We are cur-
rently performing experiments in which we compare the new algorithm with other
test algorithms on a number of realistic benchmarks.

There are several possibilities for extending the ESM case study. To begin with,
one could try to learn a model of the ESM with more than one function. Another
interesting possibilitywould be to learnmodels of the EHM,ACM, and othermanagers
connected to the ESM. Using thesemodels some of the properties discussed by Ploeger

Applying Automata Learning to Embedded Control Software 57

(2005) could be verified at a more detailed level. We expect that the combination
of LearnLib with the extended Lee & Yannakakis algorithm can be applied to learn
models of many other software components.

In the specific case study described in this article, we know that our learning
algorithm has succeeded to learn the correct model, since we established equivalence
with a reference model that was constructed independently from the RRRT model of
the ESM software. In the absence of a reference model, we can never guarantee that
the actual system behaviour conforms to a learned model. In order to deal with this
problem, it is important to define metrics that quantify the difference (or distance)
between a hypothesis and a correct model of the SUT and to develop test generation
algorithms that guarantee an upper bound on this difference. Preliminary work in
this area is reported by Smetsers, et al. (2014).

Acknowledgements
We thank Lou Somers for suggesting the ESM case study and for his support of our
research. Fides Aarts and Harco Kuppens helped us with the use of LearnLib and
CADP, and Jan Tretmans gave useful feedback.

58 Chapter 3

Chapter 4
Minimal Separating Sequences
for All Pairs of States

Rick Smetsers
Radboud University

Joshua Moerman
Radboud University

David N. Jansen
Radboud University

Abstract
Findingminimal separating sequences for all pairs of inequivalent states
in a finite state machine is a classic problem in automata theory. Sets of
minimal separating sequences, for instance, play a central role in many
conformance testing methods. Moore has already outlined a partition
refinement algorithm that constructs such a set of sequences in 𝒪(mn)
time, where m is the number of transitions and n is the number of
states. In this chapter, we present an improved algorithm based on the
minimisation algorithm of Hopcroft that runs in 𝒪(m logn) time. The
efficiency of our algorithm is empirically verified and compared to the
traditional algorithm.

This chapter is based on the following publication:
Smetsers, R., Moerman, J., & Jansen, D. N. (2016). Minimal Separating Sequences for
All Pairs of States. In Language and Automata Theory and Applications - 10th International
Conference, LATA, Proceedings. Springer. doi:10.1007/978-3-319-30000-9_14

http://dx.doi.org/10.1007/978-3-319-30000-9_14

60 Chapter 4

In diverse areas of computer science and engineering, systems can bemodelled by finite
state machines (FSMs). One of the cornerstones of automata theory is minimisation of
such machines – andmany variation thereof. In this process one obtains an equivalent
minimal FSM, where states are different if and only if they have different behaviour.
The first to develop an algorithm for minimisation was Moore (1956). His algorithm
has a time complexity of 𝒪(mn), where m is the number of transitions, and n is
the number of states of the FSM. Later, Hopcroft (1971) improved this bound to
𝒪(m logn).

Minimisation algorithms can be used as a framework for deriving a set of sepa-
rating sequences that show why states are inequivalent. The separating sequences in
Moore’s framework are of minimal length (Gill, 1962). Obtaining minimal separating
sequences in Hopcroft’s framework, however, is a non-trivial task. In this chapter, we
present an algorithm for finding such minimal separating sequences for all pairs of
inequivalent states of a FSM in 𝒪(m logn) time.

Coincidentally, Bonchi and Pous (2013) recently introduced a new algorithm for
the equally fundamental problem of proving equivalence of states in non-deterministic
automata. As both their and our work demonstrate, even classical problems in au-
tomata theory can still offer surprising research opportunities. Moreover, new ideas
for well-studied problems may lead to algorithmic improvements that are of practical
importance in a variety of applications.

One such application for our work is in conformance testing. Here, the goal is
to test if a black box implementation of a system is functioning as described by a
given FSM. It consists of applying sequences of inputs to the implementation, and
comparing the output of the system to the output prescribed by the FSM. Minimal
separating sequences are used in many test generation methods (Dorofeeva, et al.,
2010). Therefore, our algorithm can be used to improve these methods.

1 Preliminaries
We define a FSM as a Mealy machineM = (I,O, S, δ, λ), where I,O and S are finite
sets of inputs, outputs and states respectively, δ : S × I → S is a transition function and
λ : S × I → O is an output function. The functions δ and λ are naturally extended to
δ : S× I∗ → S and λ : S× I∗ → O∗. Moreover, given a set of states S′ ⊆ S and a sequence
x ∈ I∗, we define δ(S′, x) = {δ(s, x) | s ∈ S′} and λ(S′, x) = {λ(s, x) | s ∈ S′}. The inverse
transition function δ−1 : S × I → 𝒫(S) is defined as δ−1(s, a) = {t ∈ S | δ(t, a) = s}.

Observe that Mealy machines are deterministic and input-enabled (i.e., complete)
by definition. The initial state is not specified because it is of no importance in what
follows. For the remainder of this chapter we fix a machine M = (I,O, S, δ, λ). We
use n to denote its number of states, that is n = |S|, and m to denote its number of
transitions, that ism = |S| × |I|.

Definition 1. States s and t are equivalent if λ(s, x) = λ(t, x) for all x in I∗.

Minimal Separating Sequences for All Pairs of States 61

We are interested in the case where s and t are not equivalent, i.e., inequivalent. If
all pairs of distinct states of a machine M are inequivalent, then M is minimal. An
example of a minimal FSM is given in Figure 4.1.

Definition 2. A separating sequence for states s and t in s is a sequence x ∈ I∗ such
that λ(s, x) ≠ λ(t, x). We say x is minimal if |y| ≥ |x| for all separating sequences y for s
and t.

A separating sequence always exists if two states are inequivalent, and there might
be multiple minimal separating sequences. Our goal is to obtain minimal separating
sequences for all pairs of inequivalent states ofM.

1.1 Partition Refinement

In this section we will discuss the basics of minimisation. Both Moore’s algorithm
and Hopcroft’s algorithm work by means of partition refinement. A similar treatment
(for DFAs) is given by Gries (1973).

A partition P of S is a set of pairwise disjoint non-empty subsets of S whose union
is exactly S. Elements in P are called blocks. If P and P′ are partitions of S, then P′ is a
refinement of P if every block of P′ is contained in a block of P. A partition refinement
algorithm constructs the finest partition under some constraint. In our context the
constraint is that equivalent states belong to the same block.

Definition 3. A partition is valid if equivalent states are in the same block.

Partition refinement algorithms for FSMs start with the trivial partition P = {S}, and
iteratively refine P until it is the finest valid partition (where all states in a block are
equivalent). The blocks of such a complete partition form the states of the minimised
FSM, whose transition and output functions are well-defined because states in the
same block are equivalent.

Let B be a block and a be an input. There are two possible reasons to split B (and
hence refine the partition). First, we can split B with respect to output after a if the set
λ(B, a) contains more than one output. Second, we can split B with respect to the state
after a if there is no single block B′ containing the set δ(B, a). In both cases it is obvious
what the new blocks are: in the first case each output in λ(B, a) defines a new block,
in the second case each block containing a state in δ(B, a) defines a new block. Both
types of refinement preserve validity.

Partition refinement algorithms for FSMs first perform splits w.r.t. output, until
there are no such splits to be performed. This is precisely the case when the partition
is acceptable.

Definition 4. A partition is acceptable if for all pairs s, t of states contained in the
same block and for all inputs a in I, λ(s, a) = λ(t, a).

62 Chapter 4

Any refinement of an acceptable partition is again acceptable. The algorithm continues
performing splits w.r.t. state, until no such splits can be performed. This is exactly the
case when the partition is stable.

Definition 5. A partition is stable if it is acceptable and for any input a in I and states
s and t that are in the same block, states δ(s, a) and δ(t, a) are also in the same block.

Since an FSM has only finitely many states, partition refinement will terminate. The
output is the finest valid partition which is acceptable and stable. For a more formal
treatment on partition refinement we refer to Gries (1973).

1.2 Splitting Trees and Refinable Partitions

Both types of splits described above can be used to construct a separating sequence
for the states that are split. In a split w.r.t. the output after a, this sequence is simply
a. In a split w.r.t. the state after a, the sequence starts with an a and continues with
the separating sequence for states in δ(B, a). In order to systematically keep track of
this information, we maintain a splitting tree. The splitting tree was introduced by Lee
and Yannakakis (1994) as a data structure for maintaining the operational history of
a partition refinement algorithm.

Definition 6. A splitting tree forM is a rooted tree Twith a finite set of nodes with
the following properties:
– Each node u in T is labelled by a subset of S, denoted l(u).
– The root is labelled by S.
– For each inner node u, l(u) is partitioned by the labels of its children.
– Each inner nodeu is associatedwith a sequence σ(u) that separates states contained

in different children of u.

We use C(u) to denote the set of children of a node u. The lowest common ancestor (lca)
for a set S′ ⊆ S is the node u such that S′ ⊆ l(u) and S′ ̸⊆ l(v) for all v ∈ C(u) and
is denoted by lca(S′). For a pair of states s and t we use the shorthand lca(s, t) for
lca({s, t}).

The labels l(u) can be stored as a refinable partition data structure (Valmari &
Lehtinen, 2008). This is an array containing a permutation of the states, ordered
so that states in the same block are adjacent. The label l(u) of a node then can be
indicated by a slice of this array. If node u is split, some states in the slice l(u)may be
moved to create the labels of its children, but this will not change the set l(u).

A splitting tree T can be used to record the history of a partition refinement algo-
rithm because at any time the leaves of T define a partition on S, denoted P(T). We say
a splitting tree T is valid (resp. acceptable, stable, complete) if P(T) is as such. A leaf
can be expanded in one of two ways, corresponding to the two ways a block can be
split. Given a leaf u and its block B = l(u) we define the following two splits:

Minimal Separating Sequences for All Pairs of States 63

(split-output) Suppose there is an input a such that B can be split w.r.t output after
a. Then we set σ(u) = a, and we create a node for each subset of B that produces the
same output x on a. These nodes are set to be children of u.

(split-state) Suppose there is an input a such thatB can be split w.r.t. the state after a.
Then instead of splitting B as described before, we proceed as follows. First, we locate
the node v = lca(δ(B, a)). Since v cannot be a leaf, it has at least two children whose
labels contain elements of δ(B, a). We can use this information to expand the tree as
follows. For each node w in C(v) we create a child of u labelled {s ∈ B | δ(s, a) ∈ l(w)}
if the label contains at least one state. Finally, we set σ(u) = aσ(v).

A straight-forward adaptation of partition refinement for constructing a stable
splitting tree forM is shown in Algorithm 4.1. The termination and the correctness of
the algorithm outlined in Section 1.1 are preserved. It follows directly that states are
equivalent if and only if they are in the same label of a leaf node.

Require: An FSMM
Ensure: A valid and stable splitting tree T

1 initialise T to be a tree with a single node labelled S
2 repeat
3 find a ∈ I, B ∈ P(T) such that we can split Bw.r.t. output λ(⋅, a)
4 expand the u ∈ T with l(u) = B as described in (split-output)
5 until P(T) is acceptable
6 repeat
7 find a ∈ I, B ∈ P(T) such that we can split Bw.r.t. state δ(⋅, a)
8 expand the u ∈ T with l(u) = B as described in (split-state)
9 until P(T) is stable

Algorithm 4.1 Constructing a stable splitting tree.

Example 7. Figure 4.1 shows an FSM and a complete splitting tree for it. This tree is
constructed by Algorithm 4.1 as follows. First, the root node is labelled by {s0, …, s5}.
The even and uneven states produce different outputs after a, hence the root node
is split. Then we note that s4 produces a different output after b than s0 and s2, so
{s0, s2, s4} is split as well. At this point T is acceptable: no more leaves can be split
w.r.t. output. Now, the states δ({s1, s3, s5}, a) are contained in different leaves of T.
Therefore, {s1, s3, s5} is split into {s1, s5} and {s3} and associated with sequence ab. At
this point, δ({s0, s2}, a) contains states that are in both children of {s1, s3, s5}, so {s0, s2}
is split and the associated sequence is aab. We continue until T is complete.

64 Chapter 4

s0

s1 s2

s3

s4s5

b/0
a/0

a/1

b/0
b/0
a/0

b/0
a/1

a/0
b/1

b/0
a/1

(a) (b)

Figure 4.1 An FSM (a) and a complete splitting tree for it (b).

2 Minimal Separating Sequences
In Section 1.2 we have described an algorithm for constructing a complete splitting
tree. This algorithm is non-deterministic, as there is no prescribed order on the splits.
In this section we order them to obtain minimal separating sequences.

Let u be a non-root inner node in a splitting tree, then the sequence σ(u) can also be
used to split the parent of u. This allows us to construct splitting trees where children
will never have shorter sequences than their parents, as we can always split with those
sequences first. Trees obtained in this way are guaranteed to be layered, which means
that for all nodes u and all u′ ∈ C(u), |σ(u)| ≤ |σ(u′)|. Each layer consists of nodes for
which the associated separating sequences have the same length.

Our approach for constructing minimal sequences is to ensure that each layer is
as large as possible before continuing to the next one. This idea is expressed formally
by the following definitions.

Definition 8. A splitting tree T is k-stable if for all states s and t in the same leaf we
have λ(s, x) = λ(t, x) for all x ∈ I≤k.

Definition 9. A splitting tree T is minimal if for all states s and t in different leaves
λ(s, x) ≠ λ(t, x) implies |x| ≥ |σ(lca(s, t))| for all x ∈ I∗.

Minimality of a splitting tree can be used to obtain minimal separating sequences for
pairs of states. If the tree is in addition stable, we obtain minimal separating sequences
for all inequivalent pairs of states. Note that if a minimal splitting tree is (n−1)-stable
(n is the number of states ofM), then it is stable (Definition 5). This follows from the
well-known fact that n − 1 is an upper bound for the length of a minimal separating
sequence (Moore, 1956).

Algorithm 4.2 ensures a stable and minimal splitting tree. The first repeat-loop
is the same as before (in Algorithm 4.1). Clearly, we obtain a 1-stable and minimal
splitting tree here. It remains to show that we can extend this to a stable and minimal

Minimal Separating Sequences for All Pairs of States 65

splitting tree. Algorithm 4.3 will perform precisely one such step towards stability,
while maintaining minimality. Termination follows from the same reason as for Al-
gorithm 4.1. Correctness for this algorithm is shown by the following key lemma.
We will denote the input tree by T and the tree after performing Algorithm 4.3 by T′.
Observe that T is an initial segment of T′.

Lemma 10. Algorithm 4.3 ensures a (k + 1)-stable minimal splitting tree.

Proof. Let us proof stability. Let s and t be in the same leaf of T′ and let x ∈ I∗ be such
that λ(s, x) ≠ λ(t, x). We show that |x| > k + 1.

Suppose for the sake of contradiction that |x| ≤ k + 1. Let u be the leaf containing
s and t and write x = ax′. We see that δ(s, a) and δ(t, a) are separated by k-stability of
T. So the node v = lca(δ(l(u), a)) has children and an associated sequence σ(v). There
are two cases:
– |σ(v)| < k, then aσ(v) separates s and t and is of length ≤ k. This case contradicts

the k-stability of T.
– |σ(v)| = k, then the loop in Algorithm 4.3 will consider this case and split. Note

that this may not split s and t (it may occur that aσ(v) splits different elements in
l(u)). We can repeat the above argument inductively for the newly created leaf
containing s and t. By finiteness of l(u), the induction will stop and, in the end, s
and t are split.

Both cases end in contradiction, so we conclude that |x| > k + 1.
Let us now prove minimality. It suffices to consider only newly split states in T′.

Let s and t be two states with |σ(lca(s, t))| = k + 1. Let x ∈ I∗ be a sequence such that
λ(s, x) ≠ λ(t, x). We need to show that |x| ≥ k+1. Since x ≠ ϵwe can write x = ax′ and
consider the states s′ = δ(s, a) and t′ = δ(t, a)which are separated by x′. Two things
can happen:
– The states s′ and t′ are in the same leaf in T. Then by k-stability of T we get

λ(s′, y) = λ(t′, y) for all y ∈ I≤k. So |x′| > k.
– The states s′ and t′ are in different leaves in T and let u = lca(s′, t′). Then aσ(u)

separates s and t. Since s and t are in the same leaf in Twe get |aσ(u)| ≥ k + 1 by
k-stability. This means that |σ(u)| ≥ k and by minimality of Twe get |x′| ≥ k.

In both cases we have shown that |x| ≥ k + 1 as required. □

Example 11. Figure 4.2a shows a stable and minimal splitting tree T for the machine
in Figure 4.1. This tree is constructed by Algorithm 4.2 as follows. It executes the same
as Algorithm 4.1 until we consider the node labelled {s0, s2}. At this point k = 1. We
observe that the sequence of lca(δ({s0, s2}, a)) has length 2, which is too long, so we
continue with the next input. We find that we can indeed split w.r.t. the state after b,
so the associated sequence is ba. Continuing, we obtain the same partition as before,
but with smaller witnesses.

The internal data structure (a refinable partition) is shown in Figure 4.2(b): the
array with the permutation of the states is at the bottom, and every block includes

66 Chapter 4

Require: An FSMMwith n states
Ensure: A stable, minimal splitting tree T

1 initialise T to be a tree with a single node labelled S
2 repeat
3 find a ∈ I, B ∈ P(T) such that we can split Bw.r.t. output λ(⋅, a)
4 expand the u ∈ T with l(u) = B as described in (split-output)
5 until P(T) is acceptable
6 for k = 1 to n − 1 do
7 invoke Algorithm 4.3 or Algorithm 4.4 on T for k
8 end for

Algorithm 4.2 Constructing a stable and minimal splitting tree.

Require: A k-stable and minimal splitting tree T
Ensure: T is a (k + 1)-stable, minimal splitting tree

1 for all leaves u ∈ T and all inputs a ∈ I do
2 v ← lca(δ(l(u), a))
3 if v is an inner node and |σ(v)| = k then
4 expand u as described in (split-state) (this generates new leaves)
5 end if
6 end for

Algorithm 4.3 A step towards the stability of a splitting tree.

an indication of the slice containing its label and a pointer to its parent (as our final
algorithm needs to find the parent block, but never the child blocks).

B2 σ=a

B4 σ=b B8 σ=aσ(B4)

B6 σ=bσ(B2) B3 B10 σ=aσ(B6) B7

B0 B5 B1 B9

s2 s0 s4 s5 s1 s3

(a) (b)

Figure 4.2 (a) A complete and minimal splitting tree for the FSM in Figure 4.1 and
(b) its internal refinable partition data structure.

Minimal Separating Sequences for All Pairs of States 67

3 Optimising the Algorithm
In this section, we present an improvement on Algorithm 4.3 that uses two ideas
described by Hopcroft (1971) in his seminal paper on minimising finite automata:
using the inverse transition set, and processing the smaller half. The algorithm that we
present is a drop-in replacement, so that Algorithm 4.2 stays the same except for
some bookkeeping. This way, we can establish correctness of the new algorithms
more easily. The variant presented in this section reduces the amount of redundant
computations that were made in Algorithm 4.3.

Using Hopcroft’s first idea, we turn our algorithm upside down: instead of search-
ing for the lca for each leaf, we search for the leaves u for which l(u) ⊆ δ−1(l(v), a),
for each potential lca v and input a. To keep the order of splits as before, we define
k-candidates.

Definition 12. A k-candidate is a node vwith |σ(v)| = k.

A k-candidate v and an input a can be used to split a leaf u if v = lca(δ(l(u), a)),
because in this case there are at least two states s, t in l(u) such that δ(s, a) and δ(t, a)
are in labels of different nodes in C(v). Refining u this way is called splitting u with
respect to (v, a). The set C(u) is constructed according to (split-state), where each child
w ∈ C(v) defines a child uw of uwith states

l(uw) = {s ∈ l(u) | δ(s, a) ∈ l(w)}

= l(u) ∩ δ−1(l(w), a).
(4.1)

In order to perform the same splits in each layer as before, we maintain a list Lk of
k-candidates. We keep the list in order of the construction of nodes, because when
we split w.r.t. a child of a node u before we split w.r.t. u, the result is not well-defined.
Indeed, the order on Lk is the same as the order used by Algorithm 4.2. So far, the
improved algorithm still would have time complexity 𝒪(mn).

To reduce the complexity we have to use Hopcroft’s second idea of processing the
smaller half. The key idea is that, when we fix a k-candidate v, all leaves are split
with respect to (v, a) simultaneously. Instead of iterating over of all leaves to refine
them, we iterate over s ∈ δ−1(l(w), a) for all w in C(v) and look up in which leaf it is
contained to move s out of it. From Lemma 8 by Knuutila (2001) it follows that we can
skip one of the children of v. This lowers the time complexity to 𝒪(m logn). In order
to move s out of its leaf, each leaf u is associated with a set of temporary children
C′(u) that is initially empty, and will be finalised after iterating over all s and w.

In Algorithm 4.4 we use the ideas described above. For each k-candidate v and
input a, we consider all children w of v, except for the largest one (in case of multiple
largest children, we skip one of these arbitrarily). For each state s ∈ δ−1(l(w), a)we
consider the leaf u containing it. If this leaf does not have an associated temporary

68 Chapter 4

Require: A k-stable and minimal splitting tree T, and a list Lk
Ensure: T is a (k + 1)-stable and minimal splitting tree, and a list Lk+1

1 Lk+1 ← ∅
2 for all k-candidates v in Lk in order do
3 let w′ be a node in C(v)with |l(w′)| ≥ |l(w)| for all nodes w ∈ C(v)
4 for all inputs a in I do
5 for all nodes w in C(v) ∖ {w′} do
6 for all states s in δ−1(l(w), a) do
7 locate leaf u such that s ∈ l(u)
8 if C′(u) does not contain node uw then
9 add a new node uw to C′(u)
10 end if
11 move s from l(u) to l(uw)
12 end for
13 end for
14 for all leaves uwith C′(u) ≠ ∅do
15 if |l(u)| = 0 then
16 if |C′(u)| = 1 then
17 recover u by moving its elements back and clear C′(u)
18 continue with the next leaf
19 end if
20 set p = u and C(u) = C′(u)
21 else
22 construct a new node p and set C(p) = C′(u) ∪ {u}
23 insert p in the tree in the place where uwas
24 end if
25 set σ(p) = aσ(v)
26 append p to Lk+1 and clear C′(u)
27 end for
28 end for
29 end for

Algorithm 4.4 A better step towards the stability of a splitting tree.

child for wwe create such a child (line 9), if this child exists we move s into that child
(line 11).

Once we have done the simultaneous splitting for the candidate v and input a,
we finalise the temporary children. This is done at lines 14–26. If there is only one
temporary child with all the states, no split has been made and we recover this node
(line 17). In the other case we make the temporary children permanent.

Minimal Separating Sequences for All Pairs of States 69

The states remaining in u are those for which δ(s, a) is in the child of v that we
have skipped; therefore we will call it the implicit child. We should not touch these
states to keep the theoretical time bound. Therefore, we construct a new parent node
p that will “adopt” the children in C′(u) together with u (line 20).

We will now explain why considering all but the largest children of a node lowers
the algorithm’s time complexity. Let T be a splitting tree inwhichwe colour all children
of each node blue, except for the largest one. Then:

Lemma 13. A state s is in at most (log2 n) − 1 labels of blue nodes.

Proof. Observe that every blue node u has a sibling u′ such that |l(u′)| ≥ |l(u)|. So the
parent p(u) has at least 2|l(u)| states in its label, and the largest blue node has at most
n/2 states.

Suppose a state s is contained inm blue nodes. When we walk up the tree starting
at the leaf containing s, wewill visit thesem blue nodes. With each visit we can double
the lower bound of the number of states. Hence n/2 ≥ 2m andm ≤ (log2 n) − 1. □

Corollary 14. A state s is in at most log2 n sets δ−1(l(u), a), where u is a blue node
and a is an input in I.

If we now quantify over all transitions, we immediately get the following result. We
note that the number of blue nodes is at most n − 1, but since this fact is not used, we
leave this to the reader.

Corollary 15. Let ℬ denote the set of blue nodes and define

𝒳 = {(b, a, s) | b ∈ ℬ, a ∈ I, s ∈ δ−1(l(b), a)}.

Then 𝒳 has at mostmlog2 n elements.

The important observation is that when using Algorithm 4.4 we iterate in total over
every element in 𝒳 at most once.

Theorem 16. Algorithm 4.2 using Algorithm 4.4 runs in 𝒪(m logn) time.

Proof. We prove that bookkeeping does not increase time complexity by discussing
the implementation.

Inverse transition. δ−1 can be constructed as a preprocessing step in 𝒪(m).

State sorting. As described in Section 1.2, we maintain a refinable partition data
structure. Each time new pair of a k-candidate v and input a is considered, leaves are
split by performing a bucket sort.

First, buckets are created for each node in w ∈ C(v) ∖ w′ and each leaf u that
contains one or more elements from δ−1(l(w), a), where w′ is a largest child of v. The
buckets are filled by iterating over the states in δ−1(l(w), a) for all w. Then, a pivot is

70 Chapter 4

set for each leaf u such that exactly the states that have been placed in a bucket can
be moved right of the pivot (and untouched states in δ−1(l(w′), a) end up left of the
pivot). For each leaf u, we iterate over the states in its buckets and the corresponding
indices right of its pivot, and we swap the current state with the one that is at the
current index. For each bucket a new leaf node is created. The refinable partition is
updated such that the current state points to the most recently created leaf.

This way, we assure constant time lookup of the leaf for a state, and we can update
the array in constant time when we move elements out of a leaf.

Largest child. For finding the largest child, we maintain counts for the temporary
children and a current biggest one. On finalising the temporary children we store (a
reference to) the biggest child in the node, so that we can skip this node later in the
algorithm.

Storing sequences. The operation on line 25 is done in constant time by using a
linked list. □

4 Application in Conformance Testing
A splitting tree can be used to extract relevant information for two classical test gen-
eration methods: a characterisation set for the W-method and a separating family for
the HSI-method. For an introduction and comparison of FSM-based test generation
methods we refer to Dorofeeva, et al. (2010) or Chapter 2.

Definition 17. A setW ⊂ I∗ is called a characterisation set if for every pair of inequiv-
alent states s, t there is a sequence w ∈ W such that λ(s,w) ≠ λ(t,w).

Lemma 18. Let T be a complete splitting tree, then the set {σ(u) | u ∈ T} is a charac-
terisation set.

Proof. LetW = {σ(u) | u ∈ T}. Let s, t ∈ S be inequivalent states, then by completeness
s and t are contained in different leaves of T. Hence u = lca(s, t) exists and σ(u) ∈ W
separates s and t. This shows thatW is a characterisation set. □

Lemma 19. A characterisation set with minimal length sequences can be constructed
in time 𝒪(m logn).

Proof. By Lemma 18 the sequences associated with the inner nodes of a splitting tree
form a characterisation set. By Theorem 16, such a tree can be constructed in time
𝒪(m logn). Traversing the tree to obtain the characterisation set is linear in the number
of nodes (and hence linear in the number of states). □

Minimal Separating Sequences for All Pairs of States 71

Definition 20. A collection of sets {Hs}s∈S is called a separating family if for every
pair of inequivalent states s, t there is a sequence ℎ such that λ(s, ℎ) ≠ λ(t, ℎ) and ℎ is
a prefix of some ℎs ∈ Hs and some ℎt ∈ Ht.

Lemma 21. Let T be a complete splitting tree, the sets {σ(u) | s ∈ l(u), u ∈ T}s∈S form
a separating family.

Proof. Let Hs = {σ(u) | s ∈ l(u)}. Let s, t ∈ S be inequivalent states, then by complete-
ness s and t are contained in different leaves of T. Hence u = lca(s, t) exists. Since
both s and t are contained in l(u), the separating sequence σ(u) is contained in both
sets Hs and Ht. Therefore, it is a (trivial) prefix of some word ℎs ∈ Hs and some
ℎt ∈ Ht. Hence {Hs}s∈S is a separating family. □

Lemma 22. A separating family with minimal length sequences can be constructed
in time 𝒪(m logn + n2).

Proof. The separating family can be constructed from the splitting tree by collecting all
sequences of all parents of a state (by Lemma 21). Since we have to do this for every
state, this takes 𝒪(n2) time. □

For test generation one also needs a transition cover. This can be constructed in linear
time with a breadth first search. We conclude that we can construct all necessary
information for theW-method in time 𝒪(m logn) as opposed the the 𝒪(mn) algorithm
used by Dorofeeva, et al. (2010). Furthermore, we conclude that we can construct
all the necessary information for the HSI-method in time 𝒪(m logn + n2), improving
on the the reported bound 𝒪(mn3) by Hierons and Türker (2015). The original HSI-
method was formulated differently and might generate smaller sets. We conjecture
that our separating family has the same size if we furthermore remove redundant
prefixes. This can be done in 𝒪(n2) time using a trie data structure.

5 Experimental Results
We have implemented Algorithms 4.3 in Go, and we have compared their running
time on two sets of FSMs.16 The first set is from Smeenk, et al. (2015a), where FSMs
for embedded control software were automatically constructed. These FSMs are of
increasing size, varying from 546 to 3 410 states, with 78 inputs and up to 151 outputs.
The second set is inferred from Hopcroft (1971), where two classes of finite automata,
A and B, are described that serve as a worst case for Algorithms 4.3 respectively. The
FSMs that we have constructed for these automata have 1 input, 2 outputs, and 22 – 215
states. The running times in seconds on an Intel Core i5-2500 are plotted in Figure 4.3.
We note that different slopes imply different complexity classes, since both axes have
a logarithmic scale.

16 Available at https://github.com/Jaxan/partition.

https://github.com/Jaxan/partition

72 Chapter 4

500 1000 2000 3000

10−1

100

101

102

22 26 211 215
10−6

10−4

10−2

100

102

(a) Embedded control software. (b) Class A (dashed)
and class B (solid).

Figure 4.3 Running time in seconds of Algorithm 4.3 in grey and Algorithm 4.4 in
black.

6 Conclusion
In this chapter we have described an efficient algorithm for constructing a set of
minimal-length sequences that pairwise distinguish all states of a finite state machine.
By extending Hopcroft’s minimisation algorithm, we are able to construct such se-
quences in 𝒪(m logn) for a machine withm transitions and n states. This improves
on the traditional 𝒪(mn)method that is based on the classic algorithm by Moore. As
an upshot, the sequences obtained form a characterisation set and a separating family,
which play a crucial in conformance testing.

Two key observations were required for a correct adaptation of Hopcroft’s algo-
rithm. First, it is required to perform splits in order of the length of their associated
sequences. This guarantees minimality of the obtained separating sequences. Second,
it is required to consider nodes as a candidate before any one of its children are consid-
ered as a candidate. This order follows naturally from the construction of a splitting
tree.

Experimental results show that our algorithm outperforms the classic approach
for both worst-case finite state machines and models of embedded control software.
Applications of minimal separating sequences such as the ones described by Doro-
feeva, et al. (2010) and Smeenk, et al. (2015a) therefore show that our algorithm is
useful in practice.

Part 2:
Nominal Techniques

74 Chapter

Chapter 5
Learning Nominal Automata

Joshua Moerman
Radboud University

Matteo Sammartino
University

College London

Alexandra Silva
University

College London

Bartek Klin
University of Warsaw

Michał Szynwelski
University of Warsaw

Abstract
Wepresent anAngluin-style algorithm to learn nominal automata, which
are acceptors of languages over infinite (structured) alphabets. The ab-
stract approachwe take allows us to seamlessly extend known variations
of the algorithm to this new setting. In particular, we can learn a subclass
of nominal non-deterministic automata. An implementation using a re-
cently developed Haskell library for nominal computation is provided
for preliminary experiments.

This chapter is based on the following publication:
Moerman, J., Sammartino, M., Silva, A., Klin, B., & Szynwelski, M. (2017). Learning
nominal automata. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL. ACM. doi:10.1145/3009837.3009879

http://dx.doi.org/10.1145/3009837.3009879

76 Chapter 5

Automata are a well established computational abstraction with a wide range of
applications, including modelling and verification of (security) protocols, hardware,
and software systems. In an ideal world, a model would be available before a system
or protocol is deployed in order to provide ample opportunity for checking important
properties that must hold and only then the actual system would be synthesised from
the verified model. Unfortunately, this is not at all the reality: Systems and protocols
are developed and coded in short spans of time and if mistakes occur they are most
likely found after deployment. In this context, it has become popular to infer or learn
a model from a given system just by observing its behaviour or response to certain
queries. The learned model can then be used to ensure the system is complying to
desired properties or to detect bugs and design possible fixes.

Automata learning, or regular inference, is a widely used technique for creating
an automaton model from observations. The original algorithm by Angluin (1987)
works for deterministic finite automata, but since then has been extended to other
types of automata, includingMealy machines and I/O automata (see Niese, 2003, §8.5,
and Aarts & Vaandrager, 2010), and even a special class of context-free grammars
(see Isberner, 2015, §6) Angluin’s algorithm is sometimes referred to as active learning,
because it is based on direct interaction of the learner with an oracle (“the Teacher”)
that can answer different types of queries. This is in contrast with passive learning,
where a fixed set of positive and negative examples is given and no interaction with
the system is possible.

In this chapter, staying in the realm of active learning, we will extend Angluin’s
algorithm to a richer class of automata. We are motivated by situations in which a
program model, besides control flow, needs to represent basic data flow, where data
items are compared for equality (or for other theories such as total ordering). In these
situations, values for individual symbols are typically drawn from an infinite domain
and automata over infinite alphabets become natural models, as witnessed by a recent
trend (Aarts, et al., 2015; Bojańczyk, et al., 2014; Bollig, et al., 2013; Cassel, et al., 2016;
D’Antoni & Veanes, 2014).

One of the foundational approaches to formal language theory for infinite alpha-
bets uses the notion of nominal sets (Bojańczyk, et al., 2014). The theory of nominal
sets originates from the work of Fraenkel in 1922, and they were originally used to
prove the independence of the axiom of choice and other axioms. They have been
rediscovered in Computer Science by Gabbay and Pitts (see Pitts, 2013 for historical
notes), as an elegant formalism for modelling name binding, and since then they form
the basis of many research projects in the semantics and concurrency community. In
a nutshell, nominal sets are infinite sets equipped with symmetries which make them
finitely representable and tractable for algorithms. We make crucial use of this feature
in the development of a learning algorithm.
Our main contributions are the following.
– A generalisation of Angluin’s original algorithm to nominal automata. The gen-

eralisation follows a generic pattern for transporting computation models from

Learning Nominal Automata 77

finite sets to nominal sets, which leads to simple correctness proofs and opens the
door to further generalisations. The use of nominal sets with different symme-
tries also creates potential for generalisation, e.g., to languages with time features
(Bojańczyk & Lasota, 2012) or data dependencies represented as graphs (Monta-
nari & Sammartino, 2014).

– An extension of the algorithm to nominal non-deterministic automata (nominal
NFAs). To the best of our knowledge, this is the first learning algorithm for non-
deterministic automata over infinite alphabets. It is important to note that, in the
nominal setting, NFAs are strictly more expressive than DFAs. We learn a subclass
of the languages accepted by nominal NFAs, which includes all the languages
accepted by nominal DFAs. The main advantage of learning NFAs directly is
that they can provide exponentially smaller automata when compared to their
deterministic counterpart. This can be seen both as a generalisation and as an
optimisation of the algorithm.

– An implementation using a recently developed Haskell library tailored to nominal
computation – NLambda, or Nλ, by Klin and Szynwelski (2016). Our implemen-
tation is the first non-trivial application of a novel programming paradigm of
functional programming over infinite structures, which allows the programmer to
rely on convenient intuitions of searching through infinite sets in finite time.

This chapter is organised as follows. In Section 1, we present an overview of our
contributions (and the original algorithm) highlighting the challenges we faced in
the various steps. In Section 2, we revise some basic concepts of nominal sets and
automata. Section 3 contains the core technical contributions: The new algorithm
and proof of correctness. In Section 4, we describe an algorithm to learn nominal
non-deterministic automata. Section 5 contains a description of NLambda, details
of the implementation, and results of preliminary experiments. Section 6 contains a
discussion of related work. We conclude this chapter with a discussion section where
also future directions are presented.

1 Overview of the Approach
In this section, we give an overview through examples. We will start by explaining
the original algorithm for regular languages over finite alphabets, and then explain
the challenges in extending it to nominal languages.

Angluin’s algorithm L∗ provides a procedure to learn the minimal DFA accepting
a certain (unknown) language ℒ. The algorithm has access to a teacherwhich answers
two types of queries:
– membership queries, consisting of a single word w ∈ A∗, to which the teacher will

reply whether w ∈ ℒ or not;

78 Chapter 5

– equivalence queries, consisting of a hypothesis DFA H, to which the teacher replies
yes if ℒ(H) = ℒ, and no otherwise, providing a counterexample w ∈ ℒ(H)△ℒ
(where △ denotes the symmetric difference of two languages).

The learning algorithm works by incrementally building an observation table, which at
each stage contains partial information about the language ℒ. The algorithm is able to
fill the table with membership queries. As an example, and to set notation, consider
the following table (over the alphabet A = {a, b}).

ϵ a aa
ϵ 0 0 1
a 0 1 0
b 0 0 0

E

S ∪ S⋅A row : S ∪ S⋅A → 2E

row(u)(v) = 1 ⟺ uv ∈ ℒ

This table indicates that ℒ contains at least aa and definitely does not contain the
words ϵ, a, b, ba, baa, aaa. Since row is fully determined by the language ℒ, we will
from now on refer to an observation table as a pair (S, E), leaving the language ℒ
implicit.

Given an observation table (S, E) one can construct a deterministic automaton
M(S, E) = (Q, q0, δ, F)where
– Q = {row(s) | s ∈ S} is a finite set of states;
– F = {row(s) | s ∈ S, row(s)(ϵ) = 1} ⊆ Q is the set of final states;
– q0 = row(ϵ) is the initial state;
– δ : Q × A → Q is the transition function given by δ(row(s), a) = row(sa).
For this to be well-defined, we need to have ϵ ∈ S (for the initial state) and ϵ ∈ E (for
final states), and for the transition function there are two crucial properties of the table
that need to hold: Closedness and consistency. An observation table (S, E) is closed if
for all t ∈ S⋅A there exists an s ∈ S such that row(t) = row(s). An observation table
(S, E) is consistent if, whenever s1 and s2 are elements of S such that row(s1) = row(s2),
for all a ∈ A, row(s1a) = row(s2a). Each time the algorithm constructs an automaton,
it poses an equivalence query to the teacher. It terminates when the answer is yes,
otherwise it extends the table with the counterexample provided.

1.1 Simple Example of Execution

Angluin’s algorithm is displayed in Algorithm 5.1. Throughout this section, we will
consider the language(s)

ℒn = {ww | w ∈ A∗, |w| = n} .

If the alphabet A is finite then ℒn is regular for any n ∈ ℕ, and there is a finite DFA
accepting it.

Learning Nominal Automata 79

1 S, E ← {ϵ}
2 repeat
3 while (S, E) is not closed or not consistent do
4 if (S, E) is not closed then
5 find s1 ∈ S, a ∈ A such that row(s1a) ≠ row(s) for all s ∈ S
6 S ← S ∪ {s1a}
7 end if
8 if (S, E) is not consistent then
9 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that
10 row(s1) = row(s2) and ℒ(s1ae) ≠ ℒ(s2ae)
11 E ← E ∪ {ae}
12 end if
13 end while
14 Make the conjectureM(S, E)
15 if the Teacher replies no, with a counter-example t then
16 S ← S ∪ pref(t)
17 end if
18 until the Teacher replies yes to the conjectureM(S, E)
19 returnM(S, E)

Algorithm 5.1 The L∗ learning algorithm from Angluin (1987).

The languageℒ1 = {aa, bb} looks trivial, but the minimal DFA recognising it has as
many as 5 states. Angluin’s algorithmwill terminate in (at most) 5 steps. We illustrate
some relevant ones.

Step 1 We start from S, E = {ϵ}, and we fill the entries of the table below by asking
membership queries for ϵ, a and b. The table is closed and consistent, so we construct
the hypothesis 𝒜1, where q0 = row(ϵ) = {ϵ ↦ 0}:

ϵ
ϵ 0
a 0
b 0

q0𝒜1 = a, b

The Teacher replies no and gives the counterexample aa, which is in ℒ1 but it is not
accepted by𝒜1. Therefore, line 16 of the algorithm is triggered andwe set S = {ϵ, a, aa}.

Step 2 The table becomes the one on the left below. It is closed, but not consistent:
Rows ϵ and a are identical, but appending a leads to different rows, as depicted.

80 Chapter 5

Therefore, line 10 is triggered and an extra column a, highlighted in red, is added.
The new table is closed and consistent and a new hypothesis 𝒜2 is constructed.

ϵ
ϵ 0
a 0
aa 1
b 0
ab 0
aaa 0
aab 0

a
a

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
ab 0 0
aaa 0 0
aab 0 0

q0𝒜2 = q1

q2

b

a

b

aa, b

The Teacher again replies no and gives the counterexample bb, which should be
accepted by 𝒜2 but it is not. Therefore we put S ← S ∪ {b, bb}.

Step 3 The new table is the one on the left. It is closed, but ϵ and b violate consistency,
when b is appended. Therefore we add the column b and we get the table on the right,
which is closed and consistent. The new hypothesis is 𝒜3.

ϵ a
ϵ 0 0
a 0 1
aa 1 0
b 0 0
bb 1 0
ab 0 0
aaa 0 0
aab 0 0
ba 0 0
bba 0 0
bbb 0 0

b

b

ϵ a b
ϵ 0 0 0
a 0 1 0
aa 1 0 0
b 0 0 1
bb 1 0 0
ab 0 0 0
aaa 0 0 0
aab 0 0 0
ba 0 0 0
bba 0 0 0
bbb 0 0 0

q0𝒜3 = q1

q2 q3

a

b

ab a

b

a, b

The Teacher replies no and provides the counterexample babb, so S ← S ∪ {ba, bab}.

Step 4 One more step brings us to the correct hypothesis 𝒜4 (details are omitted).

q0𝒜4 =

q1

q2

q3 q4

a a

b b

b

a, b

a

a, b

Learning Nominal Automata 81

1.2 Learning Nominal Languages

Consider now an infinite alphabet A = {a, b, c, d,…}. The language ℒ1 becomes
{aa, bb, cc, dd,…}. Classical theory of finite automata does not apply to this kind
of languages, but one may draw an infinite deterministic automaton that recognises
ℒ1 in the standard sense:

q0𝒜5 = qb

qa

⋮

q3 q4

a a

b b

≠a

A

≠b

A

where⟶A and⟶≠a stand for the infinitely-many transitions labelled by elements of A
and A ∖ {a}, respectively. This automaton is infinite, but it can be finitely presented in
a variety of ways, for example:

q0𝒜6 = qx q3 q4

∀x ∈ A
x x A

≠x

A

One can formalise the quantifier notation above (or indeed the “dots” notation above
that) in several ways. A popular solution is to consider finite register automata (Demri
& Lazic, 2009 and Kaminski & Francez, 1994), i.e., finite automata equipped with a
finite number of registers where alphabet letters can be stored and later compared
for equality. Our language ℒ1 is recognised by a simple automaton with four states
and one register. The problem of learning registered automata has been successfully
attacked before by, for instance, Howar, et al. (2012).

In this chapter, however, we consider nominal automata by Bojańczyk, et al. (2014)
instead. These automata ostensibly have infinitely many states, but the set of states
can be finitely presented in a way open to effective manipulation. More specifically,
in a nominal automaton the set of states is subject to an action of permutations of a
set 𝔸 of atoms, and it is finite up to that action. For example, the set of states of 𝒜5 is:

{q0, q3, q4} ∪ {qa | a ∈ A}

and it is equipped with a canonical action of permutations π : 𝔸 → 𝔸 that maps every
qa to qπ(a) and leaves q0, q3 and q4 fixed. Technically speaking, the set of states
has four orbits (one infinite orbit and three fixed points) of the action of the group of
permutations of 𝔸. Moreover, it is required that in a nominal automaton the transition

82 Chapter 5

relation is equivariant, i.e., closed under the action of permutations. The automaton𝒜5

has this property: For example, it has a transition qa ⟶a q3, and for any π : 𝔸 → 𝔸
there is also a transition π(qa) = qπ(a) ⟶π(a) q3 = π(q3).

Nominal automatawith finitelymany orbits of states are equi-expressivewith finite
register automata (Bojańczyk, et al., 2014), but they have an important theoretical
advantage: They are a direct reformulation of the classical notion of finite automaton,
where one replaces finite sets with orbit-finite sets and functions (or relations) with
equivariant ones. A research programme advocated by Bojańczyk, et al. is to transport
various computation models, algorithms and theorems along this correspondence.
This can often be done with remarkable accuracy, and our results are a witness to this.
Indeed, as we shall see, nominal automata can be learned with an algorithm that is
almost a verbatim copy of the classical Angluin’s one.

Indeed, consider applying Angluin’s algorithm to our new language ℒ1. The key
idea is to change the basic data structure: Our observation table (S, E) will be such
that S and E are equivariant subsets of A∗, i.e., they are closed under the canonical action
of atom permutations. In general, such a table has infinitely many rows and columns, so
the following aspects of Algorithm 5.1 seem problematic:
– line 4 and line 8: finding witnesses for closedness or consistency violations poten-

tially require checking all infinitely many rows;
– line 16: every counterexample t has infinitely many prefixes, so it is not clear how

one constructs an infinite set S in finite time. However, an infinite S is necessary
for the algorithm to ever succeed, because no finite automaton recognises ℒ1.

At this stage, we need to observe that due to equivariance of S, E and ℒ1, the following
crucial properties hold:

(P1) the sets S, S⋅A and E admit a finite representation up to permutations;

(P2) the function row is such that row(π(s))(π(e)) = row(s)(e), for all s ∈ S and
e ∈ E, so the observation table admits a finite symbolic representation.

Intuitively, checking closedness and consistency, and finding a witness for their
violations, can be done effectively on the representations up to permutations (P1).
This is sound, as row is invariant w.r.t. permutations (P2).

We now illustrate these points through a few steps of the algorithm for ℒ1.

Step 1’ We start from S, E = {ϵ}. We have S⋅A = A, which is infinite but admits a
finite representation. In fact, for any a ∈ A, we have A = {π(a) | π is a permutation}.
Then, by (P2), row(π(a))(ϵ) = row(a)(ϵ) = 0, for all π, so the first table can be written
as:

ϵ
ϵ 0
a 0

q0𝒜′1 = A

Learning Nominal Automata 83

It is closed and consistent. Our hypothesis is 𝒜′1, where δ𝒜′1(row(ϵ), x) = row(x) = q0,
for all x ∈ A. As in Step 1, the Teacher replies with the counterexample aa.

ϵ
ϵ 0
a 0
aa 1
ab 0
aaa 0
aab 0

Step 2’ By equivariance ofℒ1, the counterexample tells us that allwords
of length 2 with two repeated letters are accepted. Therefore we extend S
with the (infinite!) set of such words. The new symbolic table is depcited
on the right.

The lower part stands for elements of S⋅A. For instance, ab stands for
words obtained by appending a fresh letter to words of length 1 (row a).
It can be easily verified that all cases are covered. Notice that the table is
different from that of Step 2: A single b is not in the lower part, because
it can be obtained from a via a permutation. The table is closed.

Now, for consistency we need to check row(ϵx) = row(ax), for all a, x ∈ A. Again,
by (P2), it is enough to consider rows of the table above. Consistency is violated,
because row(a) ≠ row(aa). We found a “symbolic” witness a for such violation. In
order to fix consistency, while keeping E equivariant, we need to add columns for all
π(a). The resulting table is

ϵ a b c …
ϵ 0 0 0 0 …
a 0 1 0 0 …
aa 1 0 0 0 …
ab 0 0 0 0 …
aaa 0 0 0 0 …
aab 0 0 0 0 …

where non-specified entries are 0. Only finitely many entries of the table are relevant:
row(s) is fully determined by its values on letters in s and on just one letter not in s.
For instance, we have row(a)(a) = 1 and row(a)(a′) = 0, for all a′ ∈ A ∖ {a}. The table
is trivially consistent.

Notice that this step encompasses both Step 2 and 3, because the rows b and bb
added by Step 2 are already represented by a and aa. The hypothesis automaton is

q0𝒜′2 = qx q2 ∀x ∈ A

x

≠ x
x

A

This is again incorrect, but one additional step will give the correct hypothesis au-
tomaton 𝒜6.

84 Chapter 5

1.3 Generalisation to Non-Deterministic Automata

Since our extension of Angluin’s L∗ algorithm stays close to her original development,
exploring extensions of other variations of L∗ to the nominal setting can be done in
a systematic way. We will show how to extend the algorithm NL∗ for learning NFAs
by Bollig, et al. (2009). This has practical implications: It is well-known that NFAs
are exponentially more succinct than DFAs. This is true also in the nominal setting.
However, there are challenges in the extension that require particular care.
– Nominal NFAs are strictly more expressive than nominal DFAs. We will show

that the nominal version of NL∗ terminates for all nominal NFAs that have a corre-
sponding nominal DFA and, more surprisingly, that it is capable of learning some
languages that are not accepted by nominal DFAs.

– Language equivalence of nominal NFAs is undecidable. This does not affect the
correctness proof, as it assumes a teacher which is able to answer equivalence
queries accurately. For our implementation, we will describe heuristics that pro-
duce correct results in many cases.

For the learning algorithm the power of non-determinism means that we can make
some shortcuts during learning: If we want to make the table closed, we were previ-
ously required to find an equivalent row in the upper part; now we may find a sum
of rows which, together, are equivalent to an existing row. This means that in some
cases fewer rows will be added for closedness.

2 Preliminaries
We recall the notions of nominal sets, nominal automata and nominal regular lan-
guages. We refer to Bojańczyk, et al. (2014) for a detailed account.

Let 𝔸 be a countable set and let Perm(𝔸) be the set of permutations on 𝔸, i.e.,
the bijective functions π : 𝔸 → 𝔸. Permutations form a group where the identity
permutation id is the unit element, inverse is functional inverse and multiplication is
function composition.

A nominal set (Pitts, 2013) is a set X together with a function ⋅ : Perm(𝔸) × X → X,
interpreting permutations over X. Such function must be a group action of Perm(𝔸),
i.e., it must satisfy id ⋅ x = x and π ⋅ (π′ ⋅ x) = (π ∘ π′) ⋅ x. We say that a finite A ⊂ 𝔸
supports x ∈ X whenever, for all π acting as the identity on A, we have π ⋅ x = x. In
other words, permutations that only move elements outside A do not affect x. The
support of x ∈ X, denoted supp(x), is the smallest finite set supporting x. We require
nominal sets to have finite support, meaning that supp(x) exists for all x ∈ X.

The orbit of x, denoted orb(x), is the set of elements in X reachable from x via
permutations, explicitly

orb(x) = {π ⋅ x | π ∈ Perm(𝔸)}.

We say that X is orbit-finite whenever it is a union of finitely many orbits.

Learning Nominal Automata 85

Given a nominal set X, a subset Y ⊆ X is equivariant if it is preserved by permu-
tations, i.e., π ⋅ y ∈ Y, for all y ∈ Y. In other words, Y is a union of some orbits of X.
This definition extends to the notion of an equivariant relation R ⊆ X × Y, by setting
π⋅(x, y) = (π⋅x, π⋅y), for (x, y) ∈ R; similarly for relations of greater arity. The dimension
of nominal set X is the maximal size of supp(x), for any x ∈ X. Every orbit-finite set
has finite dimension.

We define 𝔸(k) = {(a1, …, ak) | ai ≠ aj for i ≠ j}. For every single-orbit nominal
set Xwith dimension k, there is a surjective equivariant map

fX : 𝔸(k) → X.

This map can be used to get an upper bound for the number of orbits of X1 ×…× Xn,
for Xi a nominal set with li orbits and dimension ki. Suppose Oi is an orbit of Xi.
Then we have a surjection

fO1 ×⋯× fOn : 𝔸(ki) ×⋯×𝔸(kn) → O1 ×⋯×On

stipulating that the codomain cannot have more orbits than the domain. Let f𝔸({ki})
denote the number of orbits of 𝔸(k1) ×⋯×𝔸(kn), for any finite sequence of natural
numbers {ki}. We can form at most l = l1l2…ln tuples of the form O1 × ⋯ × On, so
X1 ×⋯× Xn has at most lf𝔸(k1, …, kn) orbits.

For X single-orbit, the local symmetries are defined by the group

{g ∈ Sk | fX(x1, …, xk) = fX(xg(1), …, xg(k)) for all xi ∈ X},

where k is the dimension of X and Sk is the symmetric group of permutations over k
distinct elements.

NFAs on sets have a finite state space. We can define nominal NFAs, with the
requirement that the state space is orbit-finite and the transition relation is equivariant.
A nominal NFA is a tuple (Q,A,Q0, F, δ), where:
– Q is an orbit-finite nominal set of states;
– A is an orbit-finite nominal alphabet;
– Q0, F ⊆ Q are equivariant subsets of initial and final states;
– δ ⊆ Q×A×Q is an equivariant transition relation.
A nominal DFA is a special case of nominal NFA where Q0 = {q0} and the transition
relation is an equivariant function δ : Q×A → Q. Equivariance here can be rephrased
as requiring δ(π ⋅ q, π ⋅ a) = π ⋅ δ(q, a). In most examples we take the alphabet to be
A = 𝔸, but it can be any orbit-finite nominal set. For instance,A = Act×𝔸, whereAct
is a finite set of actions, represents actions act(x)with one parameter x ∈ 𝔸 (actions
with arity n can be represented via n-fold products of 𝔸).

A language ℒ is nominal regular if it is recognised by a nominal DFA. The theory
of nominal regular languages recasts the classical one using nominal concepts. A
nominal Myhill-Nerode-style syntactic congruence is defined: w,w′ ∈ A∗ are equivalent
w.r.t. ℒ, written w ≡ℒ w′, whenever

86 Chapter 5

wv ∈ ℒ ⟺ w′v ∈ ℒ

for all v ∈ A∗. This relation is equivariant and the set of equivalence classes [w]ℒ is a
nominal set.

Theorem 1. (Myhill-Nerode theorem for nominal sets by Bojańczyk, et al., 2014)
Let ℒ be a nominal language. The following conditions are equivalent:
1. the set of equivalence classes of ≡ℒ is orbit-finite;
2. ℒ is recognised by a nominal DFA.

Unlike what happens for ordinary regular languages, nominal NFAs and nominal
DFAs are not equi-expressive. Here is an example of a language accepted by a nominal
NFA, but not by a nominal DFA:

ℒeq = {a1…an | ai = aj, for some i < j ∈ {1,…, n}} .

In the theory of nominal regular languages, several problems are decidable: Language
inclusion and minimality test for nominal DFAs. Moreover, orbit-finite nominal sets
can be finitely-represented, and so can be manipulated by algorithms. This is the key
idea underpinning our implementation.

2.1 Different Atom Symmetries

An important advantage of nominal set theory as considered by Bojańczyk, et al.
(2014) is that it retains most of its properties when the structure of atoms 𝔸 is re-
placed with an arbitrary infinite relational structure subject to a few model-theoretic
assumptions. An example alternative structure of atoms is the total order of rational
numbers (ℚ, <), with the group of monotone bijections of ℚ taking the role of the
group of all permutations. The theory of nominal automata remains similar, and an
example nominal language over the atoms (ℚ, <) is:

{a1…an | ai ≤ aj, for some i < j ∈ {1,…, n}}

which is recognised by a nominal DFA over those atoms.
To simplify the presentation, in this chapter we concentrate on the “equality atoms”

only. However, both the theory and the implementation can be generalised to other
atom structures, with the “ordered atoms” (ℚ, <) as the simplest other example. We
investigate the total order symmetry (ℚ, <) in Chapter 6.

3 Angluin’s Algorithm for Nominal DFAs
In our algorithm, we will assume a teacher as described at the start of Section 1. In
particular, the teacher is able to answer membership queries and equivalence queries,

Learning Nominal Automata 87

now in the setting of nominal languages. We fix a target languageℒ, which is assumed
to be a nominal regular language.

The learning algorithm for nominal automata, νL∗, will be very similar to L∗ in
Algorithm 5.1. In fact, we only change the following lines:

6’ S ← S ∪ orb(sa)
11’ E ← E ∪ orb(ae)
16’ S ← S ∪ pref(orb(t))

(5.1)

The basic data structure is an observation table (S, E, T)where S and E are orbit-finite
subsets ofA∗ and T : S∪S⋅A×E → 2 is an equivariant function defined by T(s, e) = ℒ(se)
for each s ∈ S∪S⋅A and e ∈ E. Since T is determined by ℒwe omit it from the notation.
Let row : S∪S⋅A → 2E denote the curried counterpart of T. Let u ∼ v denote the relation
row(u) = row(v).

Definition 2. The table is called closed if for each t ∈ S⋅A there is a s ∈ S with t ∼ s.
The table is called consistent if for each pair s1, s2 ∈ Swith s1 ∼ s2 we have s1a ∼ s2a
for all a ∈ A.

The above definitions agree with the abstract definitions given by Jacobs and Silva
(2014) and we may use some of their results implicitly. The intuition behind the
definitions is as follows. Closedness assures us that for each state we have a successor
state for each input. Consistency assures us that each state has at most one successor
for each input. Together it allows us to construct a well-defined minimal automaton
from the observations in the table.

The algorithm starts with a trivial observation table and tries to make it closed and
consistent by adding orbits of rows and columns, filling the table via membership
queries. When the table is closed and consistent it constructs a hypothesis automaton
and poses an equivalence query.

The pseudocode for the nominal version is the same as listed in Algorithm 5.1,
modulo the changes displayed in (5.1). However, we have to take care to ensure that
all manipulations and tests on the (possibly) infinite sets S, E and A terminate in finite
time. We refer to Bojańczyk, et al. (2014) and Pitts (2013) for the full details on how
to represent these structures and provide a brief sketch here. The sets S, E,A and S⋅A
can be represented by choosing a representative for each orbit. The function T in turn
can be represented by cells Ti,j : orb(si) × orb(ej) → 2 for each representative si and
ej. Note, however, that the product of two orbits may consist of several orbits, so that
Ti,j is not a single boolean value. Each cell is still orbit-finite and can be filled with
only finitely many membership queries. Similarly the curried function row can be
represented by a finite structure.

To check whether the table is closed, we observe that if we have a corresponding
row s ∈ S for some t ∈ S⋅A, this holds for any permutation of t. Hence it is enough
to check the following: For all representatives t ∈ S⋅A there is a representative s ∈ S

88 Chapter 5

with row(t) = π ⋅ row(s) for some permutation π. Note that we only have to consider
finitely many permutations, since the support is finite and so we can decide this
property. Furthermore, if the property does not hold, we immediately find a witness
represented by t.

Consistency is a bit more complicated, but it is enough to consider the set of
inconsistencies, {(s1, s2, a, e) | row(s1) = row(s2) ∧ row(s1a)(e) ≠ row(s2a)(e)}. It is
an equivariant subset of S × S × A × E and so it is orbit-finite. Hence we can decide
emptiness and obtain representatives if it is non-empty.

Constructing the hypothesis happens in the same way as before (Section 1), where
we note the state space is orbit-finite since it is a quotient of S. Moreover, the function
row is equivariant, so all structure (Q0, F and δ) is equivariant as well.

The representation given above is not the only way to represent nominal sets. For
example, first-order definable sets can be used aswell (Klin& Szynwelski, 2016). From
now on we assume to have set theoretic primitives so that each line in Algorithm 5.1
is well defined.

3.1 Correctness

To prove correctness we only have to prove that the algorithm terminates, that is,
only finitely many hypotheses will be produced. Correctness follows trivially from
termination since the last step of the algorithm is an equivalence query to the teacher
inquiring whether an hypothesis automaton accepts the target language. We start out
by listing some facts about observation tables.

Lemma 3. The relation ∼ is an equivariant equivalence relation. Furthermore, for all
u, v ∈ Swe have that u ≡ℒ v implies u ∼ v.

This lemma implies that at any stage of the algorithm the number of orbits of S/∼ does
not exceed the number of orbits of theminimal acceptor with state spaceA∗/≡ℒ (recall
that ≡ℒ is the nominal Myhill-Nerode equivalence relation). Moreover, the following
lemma shows that the dimension of the state space never exceeds the dimension of
the minimal acceptor. Recall that the dimension is the maximal size of the support of
any state, which is different than the number of orbits.

Lemma 4. We have supp([u]∼) ⊆ supp([u]≡ℒ) ⊆ supp(u) for all u ∈ S.

Lemma 5. The automaton constructed from a closed and consistent table is minimal.

Proof. Follows from the categorical perspective by Jacobs and Silva (2014). □

We note that the constructed automaton is consistent with the table (we use that the
set S is prefix-closed and E is suffix-closed (Angluin, 1987)). The following lemma
shows that there are no strictly “smaller” automata consistent with the table. So the
automaton is not just minimal, it is minimal w.r.t. the table.

Learning Nominal Automata 89

Lemma 6. LetH be the automaton associatedwith a closed and consistent table (S, E).
IfM′ is an automaton consistent with (S, E) (meaning that se ∈ ℒ(M′) ⟺ se ∈ ℒ(H)
for all s ∈ S ∪ S⋅A and e ∈ E) andM′ has at most as many orbits as H, then there is a
surjective map f : QM′ → QH. If moreover
– M′s dimension is bounded by the dimension of H, i.e., supp(m) ⊆ supp(f(m)) for

allm ∈ Q′M, and
– M′ has no fewer local symmetries than H, i.e., π ⋅ f(m) = f(m) implies π ⋅ m = m

for allm ∈ Q′M,
then f defines an isomorphismM′ ≅ H of nominal DFAs.

Proof. (All maps in this proof are equivariant.) Define a map row′ : Q′M → 2E by
restricting the language map Q′M → 2A∗ to E. First, observe that row′(δ′(q′0, s)) =
row(s) for all s ∈ S ∪ S⋅A, since ϵ ∈ E andM′ is consistent with the table. Second, we
have {row′(δ′(q′0, s)) | s ∈ S} ⊆ {row′(q) | q ∈ M′}.

Let n be the number of orbits of H. The former set has n orbits by the first observa-
tion, the latter set has at most n orbits by assumption. We conclude that the two sets
(both being equivariant) must be equal. That means that for each q ∈ M′ there is a
s ∈ S such that row′(q) = row(s). We see that row′ : M′ → {row′(δ′(q′0, s)) | s ∈ S} = H
is a surjective map. Since a surjective map cannot increase the dimensions of orbits
and the dimensions ofM′ are bounded, we note that the dimensions of the orbits in H
andM′ have to agree. Similarly, surjective maps preserve local symmetries. This map
must hence be an isomorphism of nominal sets. Note that row′(q) = row′(δ′(q′0, s))
implies q = δ′(q′0, s).

It remains to prove that it respects the automaton structures. It preserve the initial
state: row′(q′0) = row(δ′(q′0, ϵ)) = row(ϵ). Now let q ∈ M′ be a state and s ∈ S such
that row′(q) = row(s). It preserves final states: q ∈ F′ ⟺ row′(q)(ϵ) = 1 ⟺
row(s)(ϵ) = 1. Finally, it preserves the transition structure:

row′(δ′(q, a)) = row′(δ′(δ′(q′0, s), a)) = row′(δ′(q′0, sa)) = row(sa) = δ(row(s), a)

□

The above proof is an adaptation of Angluin’s proof for automata over sets. We will
now prove termination of the algorithm by proving that all steps are productive.

Theorem 7. The algorithm terminates and is hence correct.

Proof. Provided that the if-statements and set operations terminate, we are left proving
that the algorithm adds (orbits of) rows and columns only finitely often. We start by
proving that a table can be made closed and consistent in finite time.

If the table is not closed, we find a row s1 ∈ S⋅A such that row(s1) ≠ row(s) for all
s ∈ S. The algorithm then adds the orbit containing s1 to S. Since s1 was nonequivalent
to all rows, we find that S ∪ orb(t)/∼ has strictly more orbits than S/∼. Since orbits of
S/∼ cannot be more than those of A∗/≡ℒ, this happens finitely often.

90 Chapter 5

Columns are added in case of an inconsistency. Here the algorithm finds two
elements s1, s2 ∈ Swith row(s1) = row(s2) but row(s1ae) ≠ row(s2ae) for some a ∈ A
and e ∈ E. Adding ae to Ewill ensure that row′(s1) ≠ row′(s2) (row′ is the function
belonging to the updated observation table). If the two elements row′(s1), row′(s2)
are in different orbits, the number of orbits is increased. If they are in the same orbit,
we have row′(s2) = π ⋅ row′(s1) for some permutation π. Using row(s1) = row(s2)
and row′(s1) ≠ row′(s2)we have:

row(s1) = π ⋅ row(s1) row′(s1) ≠ π ⋅ row′(s1)

Consider all such π and suppose there is a π and x ∈ supp(row(s1)) such that π ⋅ x ∉
supp(row(s1)). Then we find that π ⋅ x ∈ supp(row′(s1)), and so the support of the
row has grown. By Lemma 4 this happens finitely often. Suppose such π and x do not
exist, then we consider the finite group R = {ρ|supp([s1]∼) | row(s1) = ρ ⋅ row(s1)}. We
see that {ρ|supp([s1]∼) | row′(s1) = ρ ⋅ row′(s1)} is a proper subgroup of R. So, adding
a column in this case decreases the size of the group R, which can happen only finitely
often. In this case a local symmetry is removed.

In short, the algorithm will succeed in producing a hypothesis in each round. It
remains to prove that it needs only finitely many equivalence queries.

Let (S, E) be the closed and consistent table and H its corresponding hypothesis.
If it is incorrect, then a second hypothesis H′ will be constructed which is consistent
with the old table (S, E). The two hypotheses are nonequivalent, as H′ will handle
the counterexample correctly and H does not. Therefore, H′ will have at least one
orbit more, one local symmetry less, or one orbit will have strictly bigger dimension
(Lemma 6), all of which can only happen finitely often. □

We remark that all the lemmas and proofs as above are close to the original ones of
Angluin. However, two things are crucially different. First, adding a column does
not always increase the number of (orbits of) states. It can happen that by adding
a column a bigger support is found or that a local symmetry is broken. Second, the
new hypothesis does not necessarily have more states, again it might have bigger
dimensions or less local symmetries.

From the proof Theorem 7we observe moreover that the waywe handle counterex-
amples is not crucial. Any other method which ensures a nonequivalent hypothesis
will work. In particular our algorithm is easily adapted to include optimisations
such as the ones by Maler and Pnueli (1995) and Rivest and Schapire (1993), where
counterexamples are added as columns.17

17 The additional optimisation of omitting the consistency check (Rivest & Schapire, 1993) cannot be done:
we always add awhole orbit to S (to keep the set equivariant) and inconsistencies can arise within an orbit.

Learning Nominal Automata 91

q0 q1,x

q2,x,y

x

x

yy
x

z

T1 ϵ
ϵ 0
a 0
ab 1
aa 0
aba 0
abb 0
abc 1

T2 ϵ a′
ϵ 0 0

a 0
{
1 if a′ ≠ a
0 else

ab 1
{
1 if a′ ≠ a,b
0 else

aa 0 0
aba 0 0

abb 0
{
1 if a′ ≠ a
0 else

abc 1
{
1 if a′ ≠ a,b
0 else

T3 ϵ a′ b′a′
ϵ 0 0 1

a 0
{
1 if a′ ≠ a
0 else {

1 if a ≠ a′,b′
0 else

ab 1
{
1 if a′ ≠ a,b
0 else {

1 if (b′ ≠ a,b ∧ a′ ≠ a,b) ∨ (b′ = b ∧ a′ ≠ a)
0 else

aa 0 0 1
aba 0 0 1

abb 0
{
1 if a′ ≠ a
0 else {

1 if a ≠ a′,b′
0 else

abc 1
{
1 if a′ ≠ a,b
0 else {

1 if (b′ ≠ a,b ∧ a′ ≠ a,b) ∨ (b′ = b ∧ a′ ≠ a)
0 else

Figure 5.1 Example automaton to be learnt and three subsequent tables com-
puted by νL∗. In the automaton, x, y, z denote distinct atoms.

92 Chapter 5

3.2 Example

Consider the target automaton in Figure 5.1 and an observation table T1 at some stage
during the algorithm. We remind the reader that the table is represented in a symbolic
way: The sequences in the rows and columns stand for whole orbits and the cells
denote functions from the product of the orbits to 2. Since the cells can consist of
multiple orbits, where each orbit is allowed to have a different value, we use a formula
to specify which orbits have a 1.

The table T1 has to be checked for closedness and consistency. We note that it is
definitely closed. For consistency we check the rows row(ϵ) and row(a) which are
equal. Observe, however, that row(ϵb)(ϵ) = 0 and row(ab)(ϵ) = 1, so we have an
inconsistency. The algorithm adds the orbit orb(b) as column and extends the table,
obtaining T2. We note that, in this process, the number of orbits did grow, as the two
rows are split. Furthermore, we see that both row(a) and row(ab) have empty support
in T1, but not in T2, because row(a)(a′) depends on a′ being equal or different from a,
similarly for row(ab)(a′).

The table T2 is still not consistent aswe see that row(ab) = row(ba) but row(abb)(c) =
1 and row(bab)(c) = 0. Hence the algorithm adds the columns orb(bc), obtaining
table T3. We note that in this case, no new orbits are obtained and no support has
grown. In fact, the only change here is that the local symmetry between row(ab) and
row(ba) is removed. This last table, T3, is closed and consistent and will produce the
correct hypothesis.

3.3 Query Complexity

In this section, we will analyse the number of queries made by the algorithm in the
worst case. LetM be the minimal target automaton with n orbits and of dimension k.
We will use log in base two.

Lemma 8. The number of equivalence queries En,k is 𝒪(nk log k).

Proof. By Lemma 6 each hypothesis will be either 1) bigger in the number of orbits,
which is bounded by n, or 2) bigger in the dimension of an orbit, which is bounded
by k or 3) smaller in local symmetries of an orbit. For the last part we want to know
how long a subgroup series of the permutation group Sk can be. This is bounded by
the number of divisors of k!, as each subgroup divides the order of the group. We
can easily bound the number of divisors of anym by logm and so one can at take a
subgroup at most k log k times when starting with Sk.18

18 After publication we found a better bound by Cameron, et al. (1989): the length of the longest chain of
subgroups of Sk is ⌈

3
2k⌉−b(k)−1, where b(k) is the number of ones in the binary representation of k. This

gives a linear bound in k, instead of the ‘linearithmic’ bound.

Learning Nominal Automata 93

Since the hypothesis will grow monotonically in the number of orbits and for each
orbit will grow monotonically w.r.t. the remaining two dimensions, the number of
equivalence queries is bound by n + n(k + k log k). □

Next we will give a bound for the size of the table.

Lemma 9. The table has at most n + mEn,k orbits in S with sequences of at most
lengthn+m, wherem is the length of the longest counter example given by the teacher.
The table has at most n(k + k log k + 1) orbits in E of at most length n(k + k log k + 1)

Proof. In the termination proof we noted that rows are added at most n times. In
addition (all prefixes of) counter examples are added as rows which add another
mEn,k rows. Obviously counter examples are of length at mostm and are extended
at most n times, making the length at mostm+n in the worst case.

For columns we note that one of three dimensions approaches a bound similarly
to the proof of Lemma 8. So at most n(k + k log k + 1) columns are added. Since they
are suffix closed, the length is at most n(k + k log k + 1). □

Let p and l denote respectively the dimension and the number of orbits of A.

Lemma 10. The number of orbits in the lower part of the table, S⋅A, is bounded by
(n +mEn,k)lf𝔸(p(n +m), p).

Proof. Any sequence in S is of length at most n +m, so it contains at most p(n +m)
distinct atoms. When we consider S⋅A, the extension can either reuse atoms from
those p(n+m), or none at all. Since the extra letter has at most p distinct atoms, the set
𝔸(p(n+m)) ×𝔸(p) gives a bound f𝔸(p(n+m), p) for the number of orbits of OS ×OA,
with OX an orbit of X. Multiplying by the number of such ordered pairs, namely
(n +mEn,k)l, gives a bound for S⋅A. □

LetCn,k,m = (n+mEn,k)(lf𝔸(p(n+m), p)+1)n(k+k log k+1) be themaximal number
of cells in the table. We note that this number is polynomial in k, l,m and n but it is
not polynomial in p.

Corollary 11. The number of membership queries is bounded by

Cn,k,mf𝔸(p(n +m), pn(k + k log k + 1)).

4 Learning Non-Deterministic Nominal Automata
In this section, we introduce a variant of νL∗, which we call νNL∗, where the learnt
automaton is non-deterministic. It will be based on the NL∗ algorithm by Bollig, et
al. (2009), an Angluin-style algorithm for learning NFAs. The algorithm is shown

94 Chapter 5

in Algorithm 5.2. We first illustrate NL∗, then we discuss its extension to nominal
automata.

NL∗ crucially relies on the use of residual finite-state automata (RFSA) (Denis, et
al., 2002), which are NFAs admitting unique minimal canonical representatives. The
states of this automaton correspond to Myhill-Nerode right-congruence classes, but
can be exponentially smaller than the corresponding minimal DFA: Composed states,
language-equivalent to sets of other states, can be dropped.

1 S, E ← {ϵ}
2 repeat
3 while (S, E) is not RFSA-closed or not RFSA-consistent do
4 if (S, E) is not RFSA-closed then
5 find s ∈ S, a ∈ A such that row(sa) ∈ PR(S, E) ∖ PR⊤(S, E)
6 S ← S ∪ {sa}
7 end if
8 if (S, E) is not RFSA-consistent then
9 find s1, s2 ∈ S, a ∈ A, and e ∈ E such that
10 row(s1)⊑ row(s2) and ℒ(s1ae) = 1, ℒ(s2ae) = 0
11 E ← E ∪ {ae}
12 end if
13 end while
14 Make the conjecture N(S, E)
15 if the Teacher replies no, with a counter-example t then
16 E ← E ∪ suff(t)
17 end if
18 until the Teacher replies yes to the conjecture N(S, E)
19 return N(S, E)

Algorithm 5.2 Algorithm for learning NFAs by Bollig, et al. (2009).

The algorithm NL∗ equips the observation table (S, E)with a union operation, allowing
for the detection of composed and prime rows.

Definition 12. Let (row(s1)⊔ row(s2))(e) = row(s1)(e)∨ row(s2)(e) (regarding cells
as booleans). This operation induces an ordering between rows: row(s1) ⊑ row(s2)
whenever row(s1)(e) = 1 implies row(s2)(e) = 1, for all e ∈ E.

A row row(s) is composed if row(s) = row(s1) ⊔ ⋯ ⊔ row(sn), for row(si) ≠ row(s).
Otherwise it is prime. We denote by PR⊤(S, E) the rows in the top part of the table
(ranging over S) which are prime w.r.t. the whole table (not only w.r.t. the top part).
We write PR(S, E) for all the prime rows of (S, E).

Learning Nominal Automata 95

As in L∗, states of hypothesis automata will be rows of (S, E) but, as the aim is to
construct a minimal RFSA, only prime rows are picked. New notions of closedness
and consistency are introduced, to reflect features of RFSAs.

Definition 13. A table (S, E) is:
– RFSA-closed if, for all t ∈ S⋅A, row(t) = ⨆{row(s) ∈ PR⊤(S, E) | row(s)⊑ row(t)};
– RFSA-consistent if, for all s1, s2 ∈ S and a ∈ A, row(s1)⊑row(s2) implies row(s1a)⊑

row(s2a).

If (S, E) is not RFSA-closed, then there is a row in the bottom part of the table which is
prime, but not contained in the top part. This row is then added to S (line 5). If (S, E) is
not RFSA-consistent, then there is a suffix which does not preserve the containment of
two existing rows, so those rows are actually incomparable. A new column is added to
distinguish those rows (line 10). Notice that counterexamples supplied by the teacher
are added to columns (line 16). Indeed, it is shown by Bollig, et al. (2009) that treating
the counterexamples as in the original L∗, namely adding them to rows, does not lead
to a terminating algorithm.

Definition 14. Given a RFSA-closed and RFSA-consistent table (S, E), the conjecture
automaton is N(S, E) = (Q,Q0, F, δ), where:
– Q = PR⊤(S, E);
– Q0 = {r ∈ Q | r⊑ row(ϵ)};
– F = {r ∈ Q | r(ϵ) = 1};
– the transition relation is given by δ(row(s), a) = {r ∈ Q | r⊑ row(sa)}.

As observed by Bollig, et al. (2009), N(S, E) is not necessarily a RFSA, but it is a
canonical RFSA if it is consistent with (S, E). If the algorithm terminates, then N(S, E)
must be consistent with (S, E), which ensures correctness. The termination argument
is more involved than that of L∗, but still it relies on the minimal DFA.

Developing an algorithm to learn nominal NFAs is not an obvious extension of
NL∗: Non-deterministic nominal languages strictly contain nominal regular languages,
so it is not clear what the developed algorithm should be able to learn. To deal with
this, we introduce a nominal notion of RFSAs. They are a proper subclass of nominal
NFAs, because they recognise nominal regular languages. Nonetheless, they are more
succinct than nominal DFAs.

4.1 Nominal Residual Finite-State Automata

Let ℒ be a nominal language and u be a finite string. The derivative of ℒw.r.t. u is

u−1ℒ = {v ∈ A∗ | uv ∈ ℒ}.

A language ℒ′ ⊆ 𝔸∗ is a residual of ℒ if there is uwith ℒ′ = u−1ℒ. Note that a residual
might not be equivariant, but it does have a finite support. We write R(ℒ) for the set of

96 Chapter 5

residuals of ℒ. Residuals form an orbit-finite nominal set: They are in bijection with
the state-space of the minimal nominal DFA for ℒ.

A nominal residual finite-state automaton for ℒ is a nominal NFA whose states are
subsets of such minimal automaton. Given a state q of an automaton, we write ℒ(q)
for the set of words leading from q to a set of states containing a final one.

Definition 15. A nominal residual finite-state automaton (nominal RFSA) is a nominal
NFA 𝒜 such that ℒ(q) ∈ R(ℒ(𝒜)), for all q ∈ Q𝒜.

Intuitively, all states of a nominal RSFA recognise residuals, but not all residuals are
recognised by a single state: There may be a residual ℒ′ and a set of states Q′ such
that ℒ′ = ⋃q∈Q′ ℒ(q), but no state q′ is such that ℒ(q′) = ℒ′. A residual ℒ′ is called
composed if it is equal to the union of the components it strictly contains, explicitly

ℒ′ = ∪{ℒ″ ∈ R(ℒ) | ℒ″ ⊊ ℒ′};

otherwise it is called prime. In an ordinary RSFA, composed residuals have finitely-
many components. This is not the case in a nominal RFSA. However, the set of com-
ponents of ℒ′ always has a finite support, namely supp(ℒ′).

The set of prime residuals PR(ℒ) is an orbit-finite nominal set, and can be used
to define a canonical nominal RFSA for ℒ, which has the minimal number of states
and the maximal number of transitions. This can be regarded as obtained from the
minimal nominal DFA, by removing composed states and adding all initial states and
transitions that do not change the recognised language. This automaton is necessarily
unique.

Lemma 16. Let the canonical nominal RSFA of ℒ be (Q,Q0, F, δ) such that:
– Q = PR(ℒ);
– Q0 = {ℒ′ ∈ Q | ℒ′ ⊆ ℒ};
– F = {ℒ′ ∈ Q | ϵ ∈ ℒ′};
– δ(ℒ1, a) = {ℒ2 ∈ Q | ℒ2 ⊆ a−1ℒ1}.
It is a well-defined nominal NFA accepting ℒ.

4.2 νNL∗

Our nominal version of NL∗ again makes use of an observation table (S, E) where S
and E are equivariant subsets of A∗ and row is an equivariant function. As in the basic
algorithm, we equip (S, E) with a union operation ⊔ and row containment relation ⊑,
defined as in Definition 12. It is immediate to verify that ⊔ and ⊑ are equivariant.

Our algorithm is a simple modification of the algorithm in Algorithm 5.2, where a
few lines are replaced:

Learning Nominal Automata 97

6’ S ← S ∪ orb(sa)
11’ E ← E ∪ orb(ae)
16’ E ← E ∪ suff(orb(t))

Switching to nominal sets, several decidability issues arise. The most critical one
is that rows may be the union of infinitely many component rows, as happens for
residuals of nominal languages, so finding all such components can be challenging.
We adapt the notion of composed to rows: row(t) is composed whenever

row(t) = ⨆{row(s) | row(s) ⊏ row(t)}.

where ⊏ is strict row inclusion; otherwise row(t) is prime.
We now check that three relevant parts of our algorithm terminate.

1. Row containment check. The basic containment check row(s)⊑ row(t) is decid-
able, as row(s) and row(t) are supported by the finite supports of s and t respectively.

2. RFSA-Closedness and RFSA-Consistency Checks. (Line 3)
We first show that prime rows form orbit-finite nominal sets.

Lemma 17. PR(S, E), PR⊤(S, E) and PR(S, E) ∖ PR⊤(S, E) are orbit-finite nominal sets.

Consider now RFSA-closedness. It requires computing the set C(row(t)) of compo-
nents of row(t) contained in PR⊤(S, E) (possibly including row(t)). This may not be
equivariant under permutations Perm(𝔸), but it is if we pick a subgroup.

Lemma 18. The set C(row(t)) has the following properties:
– supp(C(row(t))) ⊆ supp(row(t)).
– it is equivariant and orbit-finite under the action of the group

Gt = {π ∈ Perm(𝔸) | π|supp(row(t)) = id}

of permutations fixing supp(row(t)).

We established that C(row(t)) can be effectively computed, and the same holds for
⨆C(row(t)). In fact, ⨆ is equivariant w.r.t. the whole Perm(𝔸) and then, in particular,
w.r.t. Gt, so it preserves orbit-finiteness. Now, to check row(t) = ⨆C(row(t)), we can
just pick one representative of every orbit of S⋅A, because we have C(π ⋅ row(t)) =
π ⋅ C(row(t)) and permutations distribute over ⊔, so permuting both sides of the
equation gives again a valid equation.

For RFSA-consistency, consider the two sets

N = {(s1, s2) ∈ S × S | row(s1)⊑ row(s2)}, and

M = {(s1, s2) ∈ S × S | ∀a ∈ A : row(s1a)⊑ row(s2a)}.

98 Chapter 5

They are both orbit-finite nominal sets, by equivariance of row, ⊑ andA. We can check
RFSA-consistency in finite time by picking orbit representatives from N andM. For
each representative n ∈ N, we look for a representativem ∈ M and a permutation π
such that n = π ⋅ m. If no suchm and π exist, then n does not belong to any orbit of
M, so it violates RFSA-consistency.

3. Finding Witnesses for Violations. (Lines 5 and 10) We can find witnesses by
comparing orbit representatives of orbit-finite sets, as we did with RFSA-consistency.
Specifically, we can pick representatives in S × A and S × S × A × E and check them
against the following orbit-finite nominal sets:
– {(s, a) ∈ S × A | row(sa) ∈ PR(S, E) ∖ PR⊤(S, E)};
– {(s1, s2, a, e) ∈ S× S×A×E | row(s1a)(e) = 1, row(s2a)(e) = 0, row(s1)⊑ row(s2)};

4.3 Correctness

Now we prove correctness and termination of the algorithm. First, we prove that
hypothesis automata are nominal NFAs.

Lemma 19. The hypothesis automaton N(S, E) (see Definition 14) is a nominal NFA.

N(S, E), as in ordinary NL∗, is not always a nominal RFSA. However, we have the
following.

Theorem 20. If the table (S, E) is RFSA-closed, RFSA-consistent and N(S, E) is con-
sistent with (S, E), then N(S, E) is a canonical nominal RFSA.

This is proved by Bollig, et al. (2009) for ordinary RFSAs, using the standard theory
of regular languages. The nominal proof is exactly the same, using derivatives of
nominal regular languages and nominal RFSAs as defined in Section 4.1.

Lemma 21. The table (S, E) cannot have more than n orbits of distinct rows, where
n is the number of orbits of the minimal nominal DFA for the target language.

Proof. Rows are residuals of ℒ, which are states of the minimal nominal DFA for ℒ, so
orbits cannot be more than n. □

Theorem 22. The algorithm νNL∗ terminates and returns the canonical nominal
RFSA for ℒ.

Proof. If the algorithm terminates, then it must return the canonical nominal RFSA
for ℒ by Theorem 20. We prove that a table can be made RFSA-closed and RFSA-
consistent in finite time. This is similar to the proof of Theorem 7 and is inspired by
the proof of Theorem 2 of Bollig, et al. (2009).

Learning Nominal Automata 99

If the table is not RFSA-closed, we find a row s ∈ S⋅A such that row(s) ∈ PR(S, E) ∖
PR⊤(S, E). The algorithm then adds orb(s) to S. Since swas nonequivalent to all upper
prime rows, and thus from all the rows indexed by S, we find that S ∪ orb(t)/∼ has
strictly more orbits than S/∼ (recall that s ∼ t ⟺ row(s) = row(t)). This addition
can only be done finitely many times, because the number of orbits of S/∼ is bounded,
by Lemma 21.

Now, the case of RFSA-consistency needs some additional notions. Let R be the
(orbit-finite) nominal set of all rows, and let I = {(r, r′) ∈ R× R | r ⊏ r′} be the set of all
inclusion relations among rows. The set I is orbit-finite. In fact, consider

J = {(s, t) ∈ (S ∪ S⋅A) × (S ∪ S⋅A) | row(s) ⊏ row(t)}.

This set is an equivariant, thus orbit-finite, subset of (S ∪ S⋅A) × (S ∪ S⋅A). The set I is
the image of J via row × row, which is equivariant, so it preserves orbit-finiteness.

Now, suppose the algorithm finds two elements s1, s2 ∈ S with row(s1)⊑ row(s2)
but row(s1a)(e) = 1 and row(s2a)(e) = 0 for some a ∈ A and e ∈ E. Adding a column
to fix RFSA-consistency may: C1) increase orbits of (S∪S⋅A)/∼, or; C2) decrease orbits
of I, or; C3) decrease local symmetries/increase dimension of one orbit of rows. In
fact, if no new rows are added (C1), we have two cases.
– If row(s1) ⊏ row(s2), i.e., (row(s1), row(s2)) ∈ I, then row′(s1) ̸⊏ row′(s2), where

row′ is the new table. Therefore the orbit of (row′(s1), row′(s2)) is not in I. More-
over, row′(s) ⊏ row′(t) implies row(s) ⊏ row(t) (as no new rows are added), so
no new pairs are added to I. Overall, I has less orbits (C2).

– If row(s1) = row(s2), then wemust have row(s1) = π⋅row(s1), for some π, because
lines 4–7 forbids equal rows in different orbits. In this case row′(s1) ≠ π ⋅ row′(s1)
and we can use part of the proof of Theorem 7 to see that the orbit of row′(s1) has
bigger dimension or less local symmetries than that of row(s1) (C3).

Orbits of (S∪S⋅A)/∼ and of I are finitely-many, by Lemma 21 andwhatwe proved above.
Moreover, local symmetries can decrease finitely many times, and the dimension of
each orbit of rows is bounded by the dimension of the minimal DFA state-space.
Therefore all the above changes can happen finitely many times.

Wehave proved that the table eventually becomesRFSA-closed andRFSA-consistent.
Now we prove that a finite number of equivalence queries is needed to reach the final
hypothesis automaton. To do this, we cannot use a suitable version of Lemma 6, be-
cause this relies on N(S, E) being consistent with (S, E), which in general is not true
(see (Bollig, et al., 2008) for an example of this). We can, however, use an argument
similar to that for RFSA-consistency, because the algorithm adds columns in response
to counterexamples. Let w the counterexample provided by the teacher. When 16′
is executed, the table must change. In fact, by Lemma 2 of Bollig, et al. (2009), if it
does not, then w is already correctly classified by N(S, E), which is absurd. We have
the following cases. E1) orbits of (S ∪ S⋅A)/∼ increase (C1). Or, E2) either: Orbits in
PR(S, E) increase, or any of the following happens: Orbits in I decrease (C2), local
symmetries/dimension of an orbit of rows change (C3). In fact, if E1 does not happen

100 Chapter 5

and PR(S, E), I and local symmetries/dimension of orbits of rows do not change, the
automaton 𝒜 for the new table coincides with N(S, E). But N(S, E) = 𝒜 is a contra-
diction, because 𝒜 correctly classifies w (by Lemma 2 of Bollig, et al. (2009), as w
now belongs to columns), whereas N(S, E) does not. Both E1 and E2 can only happen
finitely many times. □

4.4 Query Complexity

We now give bounds for the number of equivalence and membership queries needed
by νNL∗. Let n be the number of orbits of the minimal DFAM for the target language
and let k be the dimension (i.e., the size of the maximum support) of its nominal set
of states.

Lemma 23. The number of equivalence queries E′n,k is O(n2f𝔸(k, k) + nk log k).

Proof. In the proof of Theorem 22, we saw that equivalence queries lead to more orbits
in (S ∪ S⋅A)/∼, in PR(S, E), less orbits in I or less local symmetries/bigger dimension
for an orbit. Clearly the first two ones can happen at most n times. We now estimate
how many times I can decrease. Suppose (S ∪ S⋅A)/∼ has d orbits and ℎ orbits are
added to it. Recall that, given an orbit O of rows of dimension at most m, f𝔸(m,m)
is an upper bound for the number of orbits in the product O×O. Since the support
of rows is bounded by k, we can give a bound for the number of orbits added to I:
dℎf𝔸(k, k), for new pairs r ⊏ r′ with r in a new orbit of rows and r′ in an old one
(or vice versa); plus (ℎ(ℎ − 1)/2)f𝔸(k, k), for r and r′ both in (distinct) new orbits;
plus ℎf𝔸(k, k), for r and r′ in the same new orbit. Notice that, if PR(S, E) grows but
(S ∪ S⋅A)/∼ does not, I does not increase. By Lemma 21, ℎ, d ≤ n, so I cannot decrease
more than (n2 + n(n − 1)/2 + n)f𝔸(k, k) times.

Local symmetries of an orbit of rows can decrease at most k log k times (see proof
of Lemma 8), and its dimension can increase at most k times. Therefore n(k + logk)
is a bound for all the orbits of rows, which are at most n, by Lemma 21. Summing up,
we get the main result. □

Lemma 24. Letm be the length of the longest counterexample given by the teacher.
Then the table has:
– at most n orbits in S, with words of length at most n;
– at mostmE′n,k orbits in E, with words of length at mostmE′n,k.

Proof. By Lemma 21, the number of orbits of rows indexed by S is at most n. Now,
notice that line 5 does not add orb(sa) to S if sa ∈ S, and lines 16 and 11 cannot identify
rows, so S has at most n orbits. The length of the longest word in Smust be at most
n, as S = {ϵ} when the algorithm starts, and line 6’ adds words with one additional
symbol than those in S.

Learning Nominal Automata 101

For columns, we note that both fixing RFSA-consistency and adding counterex-
amples increase the number of columns, but this can happen at most E′n,k times (see
proof of Lemma 23). Each time at mostm suffixes are added to E. □

We compute the maximum number of cells as in Section 3.3.

Lemma 25. The number of orbits in the lower part of the table, S⋅A, is bounded by
nlf𝔸(pn, p).

Then C′n,k,m = n(lf𝔸(pn, p) + 1)mE′n,k is the maximal number of cells in the table.
This bound is polynomial in n,m and l, but not in k and p.

Corollary 26. The number ofmembership queries is boundedbyC′n,k,mf𝔸(pn, pmE′n,k).

5 Implementation and Preliminary Experiments
Our algorithms for learning nominal automata operate on infinite sets of rows and
columns, and hence it is not immediately clear how to actually implement them on
a computer. We have used NLambda, a recently developed Haskell library by Klin
and Szynwelski (2016) designed to allow direct manipulation of infinite (but orbit-
finite) nominal sets, within the functional programming paradigm. The semantics
of NLambda is based by Bojańczyk, et al. (2012), and the library itself is inspired
by Fresh O’Caml by Shinwell (2006), a language for functional programming over
nominal data structures with binding.

5.1 NLambda

NLambda extends Haskell with a new type Atoms. Values of this type are atomic
values that can be compared for equality and have no other discernible structure. They
correspond to the elements of the infinite alphabet 𝔸 described in Section 2.

Furthermore, NLambda provides a unary type constructor Set. This appears
similar to the the Data.Set type constructor from the standard Haskell library, but its
semantics is markedly different: Whereas the latter is used to construct finite sets, the
former has orbit-finite sets as values. The new constructor Set can be applied to a range
of equality types that include Atoms, but also the tuple type (Atoms,Atoms), the list
type [Atoms], the set type Set Atoms, and other types that provide basic infrastructure
necessary to speak of supports and orbits. All these are instances of a type class
NominalType specified in NLambda for this purpose.

NLambda, in addition to all the standard machinery of Haskell, offers primitives
to manipulate values of any nominal types τ, σ:
– empty : Set τ, returns the empty set of any type;
– atoms : Set Atoms, returns the (infinite but single-orbit) set of all atoms;

102 Chapter 5

– insert : τ → Set τ → Set τ, adds an element to a set;
– map : (τ → σ) → (Set τ → Set σ), applies a function to every element of a set;
– sum : Set (Set τ) → Set τ, computes the union of a family of sets;
– isEmpty : Set τ → Formula, checks whether a set is empty.

The type Formula has the role of a Boolean type. For technical reasons, it is distinct
from the standard Haskell type Bool, but it provides standard logical operations, e.g.,

not : Formula → Formula, or : Formula → Formula → Formula,

as well as a conditional operator ite : Formula → τ → τ → τ that mimics the
standard if-then-else construction. It is also the result type of a built-in equality
test on atoms:

eq : Atoms → Atoms → Formula.

Using these primitives, one builds more functions to operate on orbit-finite sets, such
as a function to build singleton sets:

singleton : τ → Set τ
singleton x = insert x empty

or a filtering function to select elements that satisfy a given predicate:

filter : (τ → Formula) → Set τ → Set τ
filter p s = sum (map (λx. ite (p x) (singleton x) empty) s)

or functions to quantify a predicate over a set:

exists,forall : (τ → Formula) → Set τ → Formula
exists p s = not (isEmpty (filter p s))
forall p s = isEmpty (filter (λx. not (p x)) s)

and so on. Note that these functions are written in exactly the sameway as they would
be for finite sets and the standard Data.Set type. This is not an accident, and indeed
the programmer can use the convenient set-theoretic intuition of NLambda primitives.
For example, one could conveniently construct various orbit-finite sets such as the set
of all pairs of atoms:

atomPairs = sum (map (λx. map (λy. (x, y)) atoms) atoms),

the set of all pairs of distinct atoms:

distPairs = filter (λ(x, y). not (eq x y)) atomPairs

and so on.
It should be stressed that all these constructions terminate in finite time, even

though they formally involve infinite sets. To achieve this, values of orbit-finite set

Learning Nominal Automata 103

types Set τ are internally not represented as lists or trees of elements of type τ. In-
stead, they are stored and manipulated symbolically, using first-order formulas over
variables that range over atom values. For example, the value of distPairs above is
stored as the formal expression:

{(a, b) | a, b ∈ 𝔸, a ≠ b}

or, more specifically, as a triple:
– a pair (a, b) of “atom variables”,
– a list [a, b] of those atom variables that are bound in the expression (in this case,

the expression contains no free variables),
– a formula a ≠ b over atom variables.
All the primitives listed above, such as isEmpty, map and sum, are implemented on
this internal representation. In some cases, this involves checking the satisfiability of
certain formulas over atoms. In the current implementation of NLambda, an external
SMT solver Z3 (de Moura & Bjørner, 2008) is used for that purpose. For example, to
evaluate the expression isEmpty distPairs, NLambda makes a system call to the
SMT solver to check whether the formula a ≠ b is satisfiable in the first-order theory
of equality and, after receiving the affirmative answer, returns the value False.

For more details about the semantics and implementation of NLambda, see Klin
and Szynwelski (2016). The library itself can be downloaded from https://www
.mimuw.edu.pl/~szynwelski/nlambda/.

5.2 Implementation of νL∗ and νNL∗

Using NLambda we implemented the algorithms from Sections 3 and 4. We note that
the internal representation is slightly different than the one discussed in Section 3.
Instead of representing the table (S, E)with actual representatives of orbits, the sets
are represented logically as described above. Furthermore, the control flow of the
algorithm is adapted to fit in the functional programming paradigm. In particular,
recursion is used instead of a while loop. In addition to the nominal adaptation of An-
gluin’s algorithm νL∗, we implemented a variant, νL∗

col which adds counterexamples
to the columns instead of rows.

Target automata are defined using NLambda as well, using the automaton data
type provided by the library. Membership queries are already implemented by the
library. Equivalence queries are implemented by constructing a bisimulation (recall
that bisimulation implies language equivalence), where a counterexample is obtained
when two DFAs are not bisimilar. For nominal NFAs, however, we cannot implement
a complete equivalence query as their language equivalence is undecidable. We
approximated the equivalence by bounding the depth of the bisimulation for nominal
NFAs. As an optimisation, we use bisimulation up to congruence as described by
Bonchi and Pous (2015). Having an approximate teacher is a minor issue since in

https://www.mimuw.edu.pl/~szynwelski/nlambda/
https://www.mimuw.edu.pl/~szynwelski/nlambda/

104 Chapter 5

many applications no complete teacher can be implemented and one relies on testing
(Aarts, et al., 2015 and Bollig, et al., 2013). For the experiments listed here the bound
was chosen large enough for the learner to terminate with the correct automaton.

The code can be found at https://github.com/Jaxan/nominal-lstar.

5.3 Test Cases

To provide a benchmark for future improvements, we tested our algorithms on simple
automata described below. We report results in Table 5.1. The experiments were
performed on a machine with an Intel Core i5 (Skylake, 2.4 GHz) and 8 GB RAM.

Model νL∗ (s) νL∗
col (s) νNL∗ (s)

FIFO0 2 0 1.9 1.9 2 0 2.4
FIFO1 3 1 12.9 7.4 3 1 17.3
FIFO2 5 2 45.6 22.6 5 2 70.3
FIFO3 10 3 189 107 10 3 476
FIFO4 25 4 370 267 25 4 1230
FIFO5 77 5 1337 697 ∞ ∞ ∞
ℒ0 2 0 1.3 1.4 2 0 1.4
ℒ1 4 1 29.6 4.7 4 1 8.9
ℒ2 7 2 229 23.1 7 2 84.7
ℒ′0 3 1 4.4 4.9 3 1 11.3
ℒ′1 5 1 15.4 15.4 4 1 66.4
ℒ′2 9 1 46.3 40.5 5 1 210
ℒ′3 17 1 89.0 66.8 6 1 566
ℒeq n/a n/a n/a n/a 3 1 16.3

Table 5.1 Results of experiments. The column DFA (resp.
RFSA) shows the number of orbits (left sub-column) and di-
mension (right sub-column) of the learnt minimal DFA (resp.
canonical RFSA). We use∞when the running time is too high.

Queue Data Structure. A queue is a data structure to store elements which can later
be retrieved in a first-in, first-out order. It has two operations: push and pop. We define
the alphabet ΣFIFO = {push(a),pop(a) | a ∈ 𝔸}. The language FIFOn contains all valid
traces of push and pop using a bounded queue of size n. The minimal nominal DFA
for FIFO2 is given in Figure 5.2.

The state reached from q1,x via push(x) is omitted: Its outgoing transitions are
those of q2,x,y, where y is replaced by x. Similar benchmarks appear in (Aarts, et al.,
2015 and Isberner, et al., 2014).

Double Word. ℒn = {ww | w ∈ 𝔸n} from Section 1.

https://github.com/Jaxan/nominal-lstar

Learning Nominal Automata 105

q0 q1,x q2,x,y

⊥

push(x)

pop(x)

push(y)

pop(x) to q1,y
pop(𝔸)

pop(≠ x)

pop(≠ x)
push(𝔸)

∗

Figure 5.2 A nominal automaton accepting FIFO2.

NFA. Consider the language ℒeq = ⋃a∈𝔸 𝔸∗a𝔸∗a𝔸∗ of words where some letter
appears twice. This is accepted by an NFA which guesses the position of the first
occurrence of a repeated letter a and then waits for the second a to appear. The
language is not accepted by a DFA (Bojańczyk, et al., 2014). Despite this νNL∗ is able
to learn the automaton shown in Figure 5.3.

q′0 q′1,x q′2

x

𝔸

x

𝔸 to any q′2,x

𝔸

𝔸 𝔸

y to q′2,y

𝔸

Figure 5.3 A nominal NFA accepting ℒeq. Here, the transition
from q′2 to q′1,x is defined as δ(q′2, a) = {q′1,b | b ∈ 𝔸}.

𝐧-last Position. A prototypical example of regular languages which are accepted
by very small NFAs is the set of words where a distinguished symbol a appears
on the n-last position (Bollig, et al., 2009). We define a similar nominal language
ℒ′n = ⋃a∈𝔸 a𝔸∗a𝔸n. To accept such words non-deterministically, one simply guesses
the n-last position. This language is also accepted by a much larger deterministic
automaton.

6 Related Work
This section compares νL∗ with other algorithms from the literature. We stress that no
comparison is possible forνNL∗, as it is the first learning algorithm for non-deterministic
automata over infinite alphabets.

106 Chapter 5

The first one to consider learning automata over infinite alphabets was Sakamoto
(1997). In his work the problem is reduced to L∗ with some finite sub-alphabet. The
sub-alphabet grows in stages and L∗ is rerun at every stage, until the alphabet is
big enough to capture the whole language. In Sakamoto’s approach, any learning
algorithm can be used as a back-end. This, however, comes at a cost: It has to be rerun
at every stage, and each symbol is treated in isolation, which might require more
queries. Our algorithm νL∗, instead, works with the whole alphabet from the very
start, and it exploits its symmetry. An example is in Sections 1.1 and 1.2: The ordinary
learner uses four equivalence queries, whereas the nominal one, using the symmetry,
only needs three. Moreover, our algorithm is easier to generalise to other alphabets
and computational models, such as non-determinism.

More recently papers appeared on learning register automata by Cassel, et al.
(2016) and Howar, et al. (2012). Their register automata are as expressive as our
deterministic nominal automata. The state space is similar to our orbit-wise represen-
tation: It is formed by finitely many locations with registers. Transitions are defined
symbolically using propositional logic. We remark that the most recent paper by
Cassel, et al. (2016) generalises the algorithm to alphabets with different structures
(which correspond to different atom symmetries in our work), but at the cost of chang-
ing Angluin’s framework. Instead of membership queries the algorithm requires more
sophisticated tree queries. In our approach, using a different symmetry does not affect
neither the algorithm nor its correctness proof. Tree queries can be reduced to mem-
bership queries by enumerating all n-types for some n (n-types in logic correspond
to orbits in the set of n-tuples). Keeping that in mind, their complexity results are
roughly the same as ours, although this is hard to verify, as they do not give bounds
on the length of individual tree queries. Finally, our approach lends itself better to be
extended to other variations on L∗ (of which many exist), as it is closer to Angluin’s
original work.

Another class of learning algorithms for systems with large alphabets is based
on abstraction and refinement, which is orthogonal to the approach in this thesis
but connections and possible transference of techniques are worth exploring in the
future. Aarts, et al. (2015) reduce the alphabet to a finite alphabet of abstractions, and
L∗ for ordinary DFAs over such finite alphabet is used. Abstractions are refined by
counterexamples. Other similar approaches are by Howar, et al. (2011) and Isberner,
et al. (2013), where global and local per-state abstractions of the alphabet are used,
and by Mens (2017), where the alphabet can also have additional structure (e.g., an
ordering relation). We also mention that Botincan and Babic (2013) give a framework
for learning symbolic models of software behaviour.

Berg, et al. (2006 and 2008) cope with an infinite alphabet by running L∗ (adapted
to Mealy machines) using a finite approximation of the alphabet, which may be
augmented when equivalence queries are answered. A smaller symbolic model is
derived subsequently. Their approach, unlike ours, does not exploit the symmetry

Learning Nominal Automata 107

over the full alphabet. The symmetry allows our algorithm to reduce queries and to
produce the smallest possible automaton at every step.

Finally we compare with results on session automata (Bollig, et al., 2013). Session
automata are defined over finite alphabets just like the work by Sakamoto. However,
session automata are more restrictive than deterministic nominal automata. For exam-
ple, themodel cannot capture an acceptor for the language ofwordswhere consecutive
data values are distinct. This language can be accepted by a three orbit nominal DFA,
which can be learned by our algorithm.

We implemented our algorithms in the nominal library NLambda as sketched
before. Other implementation options include Fresh OCaml (Shinwell, 2006), a func-
tional programming language designed for programming over nominal data struc-
tures with binding, and Lois by Kopczyński and Toruńczyk (2016 and 2017), a C++
library for imperative nominal programming. We chose NLambda for its convenient
set-theoretic primitives, but the other options remain to be explored, in particular the
low-level Lois could be expected to provide more efficient implementations.

7 Discussion and Future Work
In this chapter we defined and implemented extensions of several versions of L∗ and
of NL∗ for nominal automata.
We highlight two features of our approach:
– It has strong theoretical foundations: The theory of nominal languages, covering dif-

ferent alphabets and symmetries (see Section 2.1); category theory, where nominal
automata have been characterised as coalgebras (Ciancia & Montanari, 2010 and
Kozen, et al., 2015) and many properties and algorithms (e.g., minimisation) have
been studied at this abstract level.

– It follows a generic pattern for transporting computation models and algorithms
from finite sets to nominal sets, which leads to simple correctness proofs.

These features pave the way to several extensions and improvements.
Future work includes a general version of νNL∗, parametric in the notion of side-

effect (an example is non-determinism). Different notions will yield models with
different degree of succinctness w.r.t. deterministic automata. The key observation
here is that many forms of non-determinism and other side effects can be captured via
the categorical notion ofmonad, i.e., an algebraic structure, on the state-space. Monads
allow generalising the notion of composed and prime state: A state is composed
whenever it is obtained from other states via an algebraic operation. Our algorithm
νNL∗ is based on the powerset monad, representing classical non-determinism. We
are currently investigating a substitution monad, where the operation is “applying a
(possibly non-injective) substitution of atoms in the support”. A minimal automaton
over this monad, akin to a RFSA, will have states that can generate all the states of the
associated minimal DFA via a substitution, but cannot be generated by other states

108 Chapter 5

(they are prime). For instance, we can give an automaton over the substitution monad
that recognises ℒ2 from Section 1:

q0 qx qxy qy q1 q2
x

y

x, [y ↦ x]
x

≠ x

y

≠ y

A
A

Here [y ↦ x]means that, if that transition is taken, qxy (hence its language) is subject
to y ↦ x. In general, the size of theminimalDFA forℒn growsmore than exponentially
with n, but an automaton with substitutions on transitions, like the one above, only
needs 𝒪(n) states. This direction is investigated in Chapter 7.

In principle, thanks to the generic approach we have taken, all our algorithms
should work for various kinds of atoms with more structure than just equality, as
advocated by Bojańczyk, et al. (2014). Details, such as precise assumptions on the
underlying structure of atoms necessary for proofs to go through, remain to be checked.
In the next chapter (Chapter 6), we investigate learning with the total order symmetry.
We implement this in NLambda, as well as a new tool for computing with nominal
sets over the total order symmetry.

The efficiency of our current implementation, as measured in Section 5.3, leaves
much to be desired. There is plenty of potential for running time optimisation, ranging
from improvements in the learning algorithms itself, to optimisations in the NLambda
library (such as replacing the external and general-purpose SMT solverwith a purpose-
built, internal one, or a tighter integration of nominal mechanismswith the underlying
Haskell language as it was done by Shinwell, 2006), to giving up the functional
programming paradigm for an imperative language such as LOIS (Kopczyński &
Toruńczyk, 2016 and 2017).

Acknowledgements
We thank Frits Vaandrager andGerco vanHeerdt for useful comments and discussions.
We also thank the anonymous reviewers.

Chapter 6
Fast Computations on Ordered Nominal Sets

David Venhoek
Radboud University

Joshua Moerman
Radboud University

Jurriaan Rot
Radboud University

Abstract
We show how to compute efficiently with nominal sets over the total or-
der symmetry by developing a direct representation of such nominal sets
and basic constructions thereon. In contrast to previous approaches, we
work directly at the level of orbits, which allows for an accurate complex-
ity analysis. The approach is implemented as the library Ons (Ordered
Nominal Sets).

Our main motivation is nominal automata, which are models for
recognising languages over infinite alphabets. We evaluate Ons in two
applications: minimisation of automata and active automata learning.
In both cases, Ons is competitive compared to existing implementations
and outperforms them for certain classes of inputs.

This chapter is based on the following publication:
Venhoek, D., Moerman, J., & Rot, J. (2018). Fast Computations on Ordered Nomi-
nal Sets. In Theoretical Aspects of Computing - ICTAC - 15th International Colloquium,
Proceedings. Springer. doi:10.1007/978-3-030-02508-3_26

http://dx.doi.org/10.1007/978-3-030-02508-3_26

110 Chapter 6

Automata over infinite alphabets are natural models for programs with unbounded
data domains. Such automata, often formalised as register automata, are applied in
modelling and analysis of communication protocols, hardware, and software systems
(see Bojańczyk, et al., 2014; D’Antoni & Veanes, 2017; Grigore & Tzevelekos, 2016;
Kaminski & Francez, 1994; Montanari & Pistore, 1997; Segoufin, 2006 and references
therein). Typical infinite alphabets include sequence numbers, timestamps, and iden-
tifiers. This means one can model data flow in such automata beside the basic control
flow provided by ordinary automata. Recently, it has been shown in a series of papers
that such models are amenable to learning (Aarts, et al., 2015; Bollig, et al., 2013;
Cassel, et al., 2016; Drews & D’Antoni, 2017; Moerman, et al., 2017; Vaandrager, 2017)
with the verification of (closed source) TCP implementations by Fiterău-Broștean, et
al. (2016) as a prominent example.

A foundational approach to infinite alphabets is provided by the notion of nominal
set, originally introduced in computer science as an elegant formalism for name bind-
ing (Gabbay & Pitts, 2002 and Pitts, 2016). Nominal sets have been used in a variety
of applications in semantics, computation, and concurrency theory (see Pitts, 2013 for
an overview). Bojańczyk, et al. (2014) introduce nominal automata, which allow one to
model languages over infinite alphabets with different symmetries. Their results are
parametric in the structure of the data values. Important examples of data domains
are ordered data values (e.g., timestamps) and data values that can only be compared
for equality (e.g., identifiers). In both data domains, nominal automata and register
automata are equally expressive.

Important for applications of nominal sets and automata are implementations. A
couple of tools exist to compute with nominal sets. Notably, Nλ (Klin & Szynwelski,
2016) and Lois (Kopczyński & Toruńczyk, 2016 and 2017) provide a general purpose
programming language to manipulate infinite sets.19 Both tools are based on SMT
solvers and use logical formulas to represent the infinite sets. These implementations
are very flexible, and the SMT solver does most of the heavy lifting, which makes the
implementations themselves relatively straightforward. Unfortunately, this comes at a
cost as SMT solving is in general Pspace-hard. Since the formulas used to describe sets
tend to grow as more calculations are done, running times can become unpredictable.

In this chapter, we use a direct representation based on symmetries and orbits, to
represent nominal sets. We focus on the total order symmetry, where data values are
rational numbers and can be compared for their order. Nominal automata over the
total order symmetry are more expressive than automata over the equality symmetry
(i.e., traditional register automata of Kaminski & Francez, 1994). A key insight is
that the representation of nominal sets from Bojańczyk, et al. (2014) becomes rather
simple in the total order symmetry; each orbit is presented solely by a natural number,
intuitively representing the number of variables or registers.

19 Other implementations of nominal techniques that are less directly related to our setting (Mihda, Fresh
OCaml, and Nominal Isabelle) are discussed in Section 5.

Fast Computations on Ordered Nominal Sets 111

Our main contributions include the following.
– We develop the representation theory of nominal sets over the total order symmetry.

We give concrete representations of nominal sets, their products, and equivariant
maps.

– We provide time complexity bounds for operations on nominal sets such as intersec-
tions andmembership. Using those results we give the time complexity of Moore’s
minimisation algorithm (generalised to nominal automata) and prove that it is
polynomial in the number of orbits.

– Using the representation theory, we are able to implement nominal sets in a C++
library Ons. The library includes all the results from the representation theory
(sets, products, and maps).

– We evaluate the performance of Ons and compare it to Nλ and Lois, using two
algorithms on nominal automata: minimisation (Bojańczyk & Lasota, 2012) and
automata learning (Moerman, et al., 2017). We use randomly generated automata
as well as concrete, logically structured models such as FIFO queues. For random
automata, our methods are drastically faster than the other tools. On the other
hand, Lois and Nλ are faster in minimising the structured automata as they exploit
their logical structure. In automata learning, the logical structure is not available
a-priori, and Ons is faster in most cases.

The structure of this chapter is as follows. Section 1 contains background on nomi-
nal sets and their representation. Section 2 describes the concrete representation of
nominal sets, equivariant maps and products in the total order symmetry. Section 3
describes the implementation Ons with complexity results, and Section 4 the eval-
uation of Ons on algorithms for nominal automata. Related work is discussed in
Section 5, and future work in Section 6.

1 Nominal sets
Nominal sets are infinite sets that carry certain symmetries, allowing a finite repre-
sentation in many interesting cases. We recall their formalisation in terms of group
actions, following Bojańczyk, et al. (2014) and Pitts (2013), to which we refer for an
extensive introduction.

1.1 Group actions

Let G be a group and X be a set. A (left) G-action is a function ⋅ : G × X → X satisfying
1 ⋅ x = x and (ℎg) ⋅ x = ℎ ⋅ (g ⋅ x) for all x ∈ X and g, ℎ ∈ G. A set X with a G-action is
called a G-set and we often write gx instead of g ⋅ x. The orbit of an element x ∈ X is
the set {gx | g ∈ G}. A G-set is always a disjoint union of its orbits (in other words, the
orbits partition the set). We say that X is orbit-finite if it has finitely many orbits, and
we denote the number of orbits by N(X).

112 Chapter 6

Amap f : X → Y betweenG-sets is called equivariant if it preserves the group action,
i.e., for all x ∈ X and g ∈ G we have g ⋅ f(x) = f(g ⋅ x). If an equivariant map f is
bijective, then f is an isomorphism and we write X ≅ Y. A subset Y ⊆ X is equivariant
if the corresponding inclusion map is equivariant. The product of two G-sets X and
Y is given by the Cartesian product X × Ywith the point-wise group action on it, i.e.,
g(x, y) = (gx, gy). Union and intersection of X and Y are well-defined if the two actions
agree on their common elements.

1.2 Nominal sets

A data symmetry is a pair (𝒟,G) where 𝒟 is a set and G is a subgroup of Sym(𝒟),
the group of bijections on 𝒟. Note that the group G naturally acts on 𝒟 by defining
gx = g(x). In the most studied instance, called the equality symmetry, 𝒟 is a countably
infinite set andG = Sym(𝒟). In this chapter, we focus on the total order symmetry given
by 𝒟 = ℚ and G = {π | π ∈ Sym(ℚ), π is monotone}.

Let (𝒟,G) be a data symmetry and X be a G-set. A set of data values S ⊆ 𝒟 is
called a support of an element x ∈ X if for all g ∈ Gwith ∀s ∈ S : gs = swe have gx = x.
A G-set X is called nominal if every element x ∈ X has a finite support.

Example 1. We list several examples for the total order symmetry. The set ℚ2 is
nominal as each element (q1, q2) ∈ ℚ2 has the finite set {q1, q2} as its support. The
set has the following three orbits:

{(q1, q2) | q1 < q2} {(q1, q2) | q1 = q2} {(q1, q2) | q1 > q2}.

For a set X, the set of all subsets of size n ∈ ℕ is denoted by 𝒫n(X) = {Y ⊆ X | #Y = n}.
The set 𝒫n(ℚ) is a single-orbit nominal set for each n, with the action defined by direct
image: gY = {gy | y ∈ Y}. The group of monotone bijections also acts by direct image
on the full power set 𝒫(ℚ), but this is not a nominal set. For instance, the set ℤ ∈ 𝒫(ℚ)
of integers has no finite support.

If S ⊆ 𝒟 is a support of an element x ∈ X, then any set S′ ⊆ 𝒟 such that S ⊆ S′ is also a
support of x. A set S ⊂ 𝒟 is a least finite support of x ∈ X if it is a finite support of x and
S ⊆ S′ for any finite support S′ of x. The existence of least finite supports is crucial
for representing orbits. Unfortunately, even when elements have a finite support, in
general they do not always have a least finite support. A data symmetry (𝒟,G) is said
to admit least supports if every element of every nominal set has a least finite support.
Both the equality and the total order symmetry admit least supports. (Bojańczyk, et al.,
2014 give additional (counter)examples of data symmetries admitting least supports.)
Having least finite supports is useful for a finite representation. Henceforth, we will
write least support to mean least finite support.

Given a nominal set X, the size of the least support of an element x ∈ X is denoted
by dim(x), the dimension of x. We note that all elements in the orbit of x have the same

Fast Computations on Ordered Nominal Sets 113

dimension. For an orbit-finite nominal set X, we define dim(X) = max{dim(x) | x ∈ X}.
For a single-orbit set O, observe that dim(O) = dim(x) where x is any element x ∈ O.

1.3 Representing nominal orbits

We represent nominal sets as collections of single orbits. The finite representation
of single orbits is based on the theory of Bojańczyk, et al. (2014), which uses the
technical notions of restriction and extension. We only briefly report their definitions
here. However, the reader can safely move to the concrete representation theory in
Section 2 with only a superficial understanding of Theorem 2 below.

The restriction of an element π ∈ G to a subset C ⊆ 𝒟, written as π|C, is the
restriction of the function π : 𝒟 → 𝒟 to the domain C. The restriction of a group G to
a subset C ⊆ 𝒟 is defined as G|C = {π|C | π ∈ G, πC = C}. The extension of a subgroup
S ≤ G|C is defined as extG(S) = {π ∈ G | π|C ∈ S}. For C ⊆ 𝒟 and S ≤ G|C, define
[C, S]ec = {{gs | s ∈ extG(S)} | g ∈ G}, i.e., the set of right cosets of extG(S) in G. Then
[C, S]ec is a single-orbit nominal set.

Using the above, we can formulate the representation theory from Bojańczyk, et
al. (2014). This gives a finite description for all single-orbit nominal sets X, namely a
finite set C together with some of its symmetries.

Theorem 2. Let X be a single-orbit nominal set for a data symmetry (𝒟,G) that
admits least supports and let C ⊆ 𝒟 be the least support of some element x ∈ X. Then
there exists a subgroup S ≤ G|C such that X ≅ [C, S]ec.

The proof by Bojańczyk, et al. (2014) uses a bit of category theory: it establishes an
equivalence of categories between single-orbit sets and the pairs (C, S). We will not
use the language of category theory much in order to keep the chapter self-contained.

2 Representation in the total order symmetry
This section develops a concrete representation of nominal sets over the total order
symmetry, as well as their equivariant maps and products. It is based on the abstract
representation theory from Section 1.3. From now on, by nominal set we always refer
to a nominal set over the total order symmetry. Hence, our data domain is ℚ and we
take G to be the group of monotone bijections.

2.1 Orbits and nominal sets

From the representation in Section 1.3, we find that any single-orbit set X can be
represented as a tuple (C, S). Our first observation is that the finite group S of ‘local

114 Chapter 6

symmetries’ in this representation is always trivial, i.e., S = I, where I = {1} is the
trivial group. This follows from the following lemma and S ≤ G|C.

Lemma 3. For every finite subset C ⊂ ℚ, we have G|C = I.

Immediately, we see that (C, S) = (C, I), and hence that the orbit is fully represented
by the set C. A further consequence of Lemma 3 is that each element of an orbit can be
uniquely identified by its least support. This leads us to the following characterisation
of [C, I]ec.

Lemma 4. Given a finite subset C ⊂ ℚ, we have [C, I]ec ≅ 𝒫#C(ℚ).

By Theorem 2 and the above lemmas, we can represent an orbit by a single integer
n, the size of the least support of its elements. This naturally extends to (orbit-finite)
nominal sets with multiple orbits by using amultiset of natural numbers, representing
the size of the least support of each of the orbits. These multisets are formalised here
as functions f : ℕ → ℕ.

Definition 5. Given a function f : ℕ → ℕ, we define a nominal set [f]o by

[f]o = ∪
n∈ℕ

1≤i≤f(n)

{i} × 𝒫n(ℚ).

Proposition 6. For every orbit-finite nominal set X, there is a function f : ℕ → ℕ such
that X ≅ [f]o and the set {n | f(n) ≠ 0} is finite. Furthermore, the mapping between X
and f is one-to-one (up to isomorphism of nominal sets) when restricting to f : ℕ → ℕ
for which the set {n | f(n) ≠ 0} is finite.

The presentation in terms of a function f : ℕ → ℕ enforces that there are only finitely
many orbits of any given dimension. The first part of the above proposition generalises
to arbitrary nominal sets by replacing the codomain of f by the class of all sets and
adapting Definition 5 accordingly. However, the resulting correspondence will no
longer be one-to-one.

As a brief example, let us consider the set ℚ×ℚ. The elements (a, b) split in three
orbits, one for a < b, one for a = b and one for a > b. These have dimension 2, 1 and
2 respectively, so the set ℚ×ℚ is represented by the multiset {1, 2, 2}.

2.2 Equivariant maps

We show how to represent equivariant maps, using two basic properties. Let f : X → Y
be an equivariant map. The first property is that the direct image of an orbit (in X)
is again an orbit (in Y), that is to say, f is defined ‘orbit-wise’. Second, equivariant
maps cannot introduce new elements in the support (but they can drop them). More
precisely:

Fast Computations on Ordered Nominal Sets 115

Lemma 7. Let f : X → Y be an equivariant map, and O ⊆ X a single orbit. The direct
image f(O) = {f(x) | x ∈ O} is a single-orbit nominal set.

Lemma 8. Let f : X → Y be an equivariant map between two nominal sets X and Y.
Let x ∈ X and let C be a support of x. Then C supports f(x).

Hence, equivariantmaps are fully determined by associating two pieces of information
for each orbit in the domain: the orbit on which it is mapped and a string denoting
which elements of the least support of the input are preserved. These ingredients are
formalised in the first part of the following definition. The second part describes how
these ingredients define an equivariant function. Proposition 10 then states that every
equivariant function can be described in this way.

Definition 9. Let H = {(I1, F1, O1), …, (In, Fn, On)} be a finite set of tuples where the
Ii’s are disjoint single-orbit nominal sets, the Oi’s are single-orbit nominal sets with
dim(Oi) ≤ dim(Ii), and the Fi’s are bit strings of length dim(Ii)with exactly dim(Oi)
ones.

Given a set H as above, we define fH : ⋃ Ii → ⋃Oi as the unique equivariant
function such that, given x ∈ Ii with least support C, fH(x) is the unique element of
Oi with support {C(j) | Fi(j) = 1}, where Fi(j) is the j-th bit of Fi and C(j) is the j-th
smallest element of C.

Proposition 10. For every equivariant map f : X → Y between orbit-finite nominal
sets X and Y there is a set H as in Definition 9 such that f = fH.

Consider the example functionmin : 𝒫3(ℚ) → ℚ which returns the smallest element
of a 3-element set. Note that both 𝒫3(ℚ) and ℚ are single orbits. Since for the orbit
𝒫3(ℚ) we only keep the smallest element of the support, we can thus represent the
functionminwith H = {(𝒫3(ℚ), 100,ℚ)}.

2.3 Products

The product X × Y of two nominal sets is again a nominal set and hence, it can be
represented itself in terms of the dimension of each of its orbits as shown in Section 2.1.
However, this approach has some disadvantages.

Example 11. We start by showing that the orbit structure of products can be non-
trivial. Consider the product of X = ℚ and the set Y = {(a, b) ∈ ℚ2 | a < b}. This
product consists of five orbits, more than one might naively expect from the fact that
both sets are single-orbit:

{(a, (b, c)) | a, b, c ∈ ℚ, a < b < c}, {(a, (a, b)) | a, b ∈ ℚ, a < b},

{(b, (a, c)) | a, b, c ∈ ℚ, a < b < c}, {(b, (a, b)) | a, b ∈ ℚ, a < b},

{(c, (a, b)) | a, b, c ∈ ℚ, a < b < c}.

116 Chapter 6

We find that this product is represented by the multiset {2, 2, 3, 3, 3}. Unfortunately,
this is not sufficient to accurately describe the product as it abstracts away from the
relation between its elements with those in X and Y. In particular, it is not possible to
reconstruct the projection maps from such a representation.

The essence of our representation of products is that each orbit O in the product
X × Y is described entirely by the dimension of O together with the two (equivariant)
projections π1 : O → X and π2 : O → Y. This combination of the orbit and the two
projection maps can already be represented using Propositions 6 and 10. However, as
we will see, a combined representation for this has several advantages. For discussing
such a representation, let us first introduce what it means for tuples of a set and two
functions to be isomorphic:

Definition 12. Givennominal setsX, Y, Z1 andZ2, and equivariant functions l1 : Z1 →
X, r1 : Z1 → Y, l2 : Z2 → X and r2 : Z2 → Y, we define (Z1, l1, r1) ≅ (Z2, l2, r2) if there
exists an isomorphism ℎ : Z1 → Z2 such that l1 = l2 ∘ ℎ and r1 = r2 ∘ ℎ.

Our goal is to have a representation that, for each orbit O, produces a tuple (A, f1, f2)
isomorphic to the tuple (O, π1, π2). The next lemma gives a characterisation that can
be used to simplify such a representation.

Lemma 13. Let X and Y be nominal sets and (x, y) ∈ X × Y. If C, Cx, and Cy are the
least supports of (x, y), x, and y respectively, then C = Cx ∪ Cy.

With Proposition 10 we represent the maps π1 and π2 by tuples (O, F1, O1) and
(O, F2, O2) respectively. Using Lemma 13 and the definitions of F1 and F2, we see
that at least one of F1(i) and F2(i) equals 1 for each i.

We can thus combine the strings F1 and F2 into a single string P ∈ {L, R, B}∗ as
follows. We set P(i) = L when only F1(i) is 1, P(i) = R when only F2(i) is 1, and
P(i) = B when both are 1. The string P fully describes the strings F1 and F2. This
process for constructing the string P gives it two useful properties. The number of Ls
and Bs in the string gives the size dimension ofO1. Similarly, the number of Rs and Bs
in the string gives the dimension of O2. We will call strings with that property valid.
In conclusion, to describe a single orbit of the product X × Y, a valid string P together
with the images of π1 and π2 is sufficient.

Definition 14. Let P ∈ {L, R, B}∗, and O1 ⊆ X, O2 ⊆ Y be single-orbit sets. Given a
tuple (P,O1, O2), where the string P is valid, define

[(P,O1, O2)]t = (𝒫|P|(ℚ), fH1 , fH2),

where Hi = {(𝒫|P|(ℚ), Fi, Oi)} and the string F1 is defined as the string Pwith Ls and
Bs replaced by 1s and Rs by 0s. The string F2 is similarly defined with the roles of L
and R swapped.

Fast Computations on Ordered Nominal Sets 117

Proposition 15. There exists a one-to-one correspondence between the orbits O ⊆
X× Y, and tuples (P,O1, O2) satisfying O1 ⊆ X, O2 ⊆ Y, and where P is a valid string,
such that [(P,O1, O2)]t ≅ (O, π1|O, π2|O).

From the above proposition it follows that we can generate the product X × Y simply
by enumerating all valid strings P for all pairs of orbits (O1, O2) of X and Y. Given
this, we can calculate the multiset representation of a product from the multiset
representations of both factors.

Theorem 16. For X ≅ [f]o and Y ≅ [g]o we have X × Y ≅ [ℎ]o, where

ℎ(n) = ∑
0≤i,j≤n
i+j≥n

f(i)g(j)
(

n
j)(

j
n − i)

.

Example 17. To illustrate some aspects of the above representation, let us use it to
calculate the product of Example 11. First, we observe that both ℚ and S = {(a, b) ∈
ℚ2 | a < b} consist of a single orbit. Hence any orbit of the product corresponds to a
triple (P,ℚ, S), where the string P satisfies |P|L + |P|B = dim(ℚ) = 1 and |P|R + |P|B =
dim(S) = 2. We can now find the orbits of the product ℚ × S by enumerating all
strings satisfying these equations. This yields
– LRR, corresponding to the orbit {(a, (b, c)) | a, b, c ∈ ℚ, a < b < c},
– RLR, corresponding to the orbit {(b, (a, c)) | a, b, c ∈ ℚ, a < b < c},
– RRL, corresponding to the orbit {(c, (a, b)) | a, b, c ∈ ℚ, a < b < c},
– RB, corresponding to the orbit {(b, (a, b)) | a, b ∈ ℚ, a < b}, and
– BR, corresponding to the orbit {(a, (a, b)) | a, b ∈ ℚ, a < b}.
Each product string fully describes the corresponding orbit. To illustrate, consider the
string BR. The corresponding bit strings for the projection functions are F1 = 10 and
F2 = 11. From the lengths of the string we conclude that the dimension of the orbit is
2. The string F1 further tells us that the left element of the tuple consists only of the
smallest element of the support. The string F2 indicates that the right element of the
tuple is constructed from both elements of the support. Combining this, we find that
the orbit is {(a, (a, b)) | a, b ∈ ℚ, a < b}.

2.4 Summary

We summarise our concrete representation in the following table. Propositions 6, 10
and 15 correspond to the three rows in the table.

Notice that in the case of maps and products, the orbits are inductively represented
using the concrete representation. As a base case we can represent single orbits by
their dimension.

118 Chapter 6

Object Representation
Single orbit O Natural number n = dim(O)
Nominal set X = ⋃iOi Multiset of these numbers
Map from single orbit f : O → Y The orbit f(O) and a bit string F
Equivariant map f : X → Y Set of tuples (O, F, f(O)), one for each orbit
Orbit in a product O ⊆ X× Y The corresponding orbits of X and Y, and a string P

relating their supports
Product X × Y Set of tuples (P,OX, OY), one for each orbit

Table 6.1 Overview of representation.

3 Implementation and Complexity of ONS
The ideas outlined above have been implemented in a C++ library, Ons, and a Haskell
library, Ons-hs.20 We focus here on the C++ library only, as the Haskell one is very sim-
ilar. The library can represent orbit-finite nominal sets and their products, (disjoint)
unions, and maps. A full description of the possibilities is given in the documentation
included with Ons.

As an example, the following program computes the product from Example 11.
Initially, the program creates the nominal set A, containing the entirety of ℚ. Then
it creates a nominal set B, such that it consists of the orbit containing the element
(1, 2) ∈ ℚ×ℚ. For this, the library determines to which orbit of the product ℚ×ℚ
the element (1, 2) belongs, and then stores a description of the orbit as described in
Section 2. Note that this means that it internally never needs to store the element
used to create the orbit. The function nomset_product then uses the enumeration of
product strings mentioned in Section 2.3 to calculate the product of A and B. Finally,
it prints a representative element for each of the orbits in the product. These elements
are constructed based on the description of the orbits stored, filled in to make their
support equal to sets of the form {1, 2,…, n}.

nomset<rational> A = nomset_rationals();
nomset<pair<rational, rational>> B({rational(1),rational(2)});
auto AtimesB = nomset_product(A, B); // compute the product
for (auto orbit : AtimesB)

cout << orbit.getElement() << " ";

Running this gives the following output (where /1 signifies the denominator):

(1/1,(2/1,3/1)) (1/1,(1/1,2/1)) (2/1,(1/1,3/1))
(2/1,(1/1,2/1)) (3/1,(1/1,2/1))

20 Ons can be found at https://github.com/davidv1992/ONS and Ons-hs can be found at https://github.com
/Jaxan/ons-hs/.

https://github.com/davidv1992/ONS
https://github.com/Jaxan/ons-hs/
https://github.com/Jaxan/ons-hs/

Fast Computations on Ordered Nominal Sets 119

Internally, orbit is implemented following the theory presented in Section 2,
storing the dimension of the orbit it represents. It also contains sufficient information
to reconstruct elements given their least support, such as the product string for orbits
resulting from a product. The class nomset then uses a standard set data structure to
store the collection of orbits contained in the nominal set it represents.

In a similar way, eqimap stores equivariant maps by associating each orbit in the
domain with the image orbit and the string representing which of the least support to
keep. This is stored using a map data structure. For both nominal sets and equivariant
maps, the underlying data structure is currently implemented using trees.

3.1 Complexity of operations

Using the concrete representation of nominal sets, we can determine the complexity
of common operations. To simplify such an analysis, we will make the following
assumptions:
– The comparison of two orbits takes O(1).
– Constructing an orbit from an element takes O(1).
– Checking whether an element is in an orbit takes O(1).
These assumptions are justified as each of these operations takes time proportional
to the size of the representation of an individual orbit, which in practice is small
and approximately constant. For instance, the orbit 𝒫n(ℚ) is represented by just the
integer n and its type.

Theorem 18. If nominal sets are implemented with a tree-based set structure (as in
Ons), the complexity of the following set operations is as follows. Recall that N(X)
denotes the number of orbits of X. We use p and f to denote functions implemented
in whatever way the user wants, which we assume to take O(1) time. The software
assumes these are equivariant, but this is not verified.

Operation Complexity
Test x ∈ X O(logN(X))
Test X ⊆ Y O(min(N(X) + N(Y),N(X) logN(Y)))

Calculate X ∪ Y O(N(X) + N(Y))
Calculate X ∩ Y O(N(X) + N(Y))

Calculate {x ∈ X | p(x)} O(N(X))
Calculate {f(x) | x ∈ X} O(N(X) logN(X))

Calculate X × Y O(N(X × Y)) ⊆ O(3dim(X)+dim(Y)N(X)N(Y))

Table 6.2 Time complexity of operations on nominal sets.

Proof. Since most parts are proven similarly, we only include proofs for the first and
last item.

120 Chapter 6

Membership. To decide x ∈ X, we first construct the orbit containing x, which is
done in constant time. Then we use a logarithmic lookup to decide whether this orbit
is in our set data structure. Hence, membership checking is O(log(N(X))).

Products. Calculating the product of two nominal sets is the most complicated
construction. For each pair of orbits in the original sets X and Y, all product strings
need to be generated. Each product orbit itself is constructed in constant time. By
generating these orbits in-order, the resulting set takes O(N(X × Y)) time to construct.

We can also give an explicit upper bound for the number of orbits in terms of
the input. Recall that orbits in a product are represented by strings of length at
most dim(X) + dim(Y). (If the string is shorter, we pad it with one of the symbols.)
Since there are three symbols (L, R and B), the product of X and Ywill have at most
3dim(X)+dim(Y)N(X)N(Y) orbits. It follows that taking products has time complexity
of O(3dim(X)+dim(Y)N(X)N(Y)). □

4 Results and evaluation in automata theory
In this section we consider applications of nominal sets to automata theory. As men-
tioned in the introduction, nominal sets are used to formalise languages over infinite
alphabets. These languages naturally arise as the semantics of register automata. The
definition of register automata is not as simple as that of ordinary finite automata.
Consequently, transferring results from automata theory to this setting often requires
non-trivial proofs. Nominal automata, instead, are defined as ordinary automata by
replacing finite sets with orbit-finite nominal sets. The theory of nominal automata
is developed by Bojańczyk, et al. (2014) and it is shown that many algorithms, such
as minimisation (based on the Myhill-Nerode equivalence), from automata theory
transfer to nominal automata. Not all algorithms work: e.g., the subset construction
fails for nominal automata.

As an example we consider the following language on rational numbers:

ℒint = {a1b1⋯anbn | ai, bi ∈ ℚ, ai < ai+1 < bi+1 < bi for all i}.

We call this language the interval language as a wordw ∈ ℚ∗ is in the language when it
denotes a sequence of nested intervals. This language contains arbitrarily long words.
For this language it is crucial to work with an infinite alphabet as for each finite set
C ⊂ ℚ, the restriction ℒint ∩ C∗ is just a finite language. Note that the language is
equivariant: w ∈ ℒint ⟺ wg ∈ ℒint for any monotone bijection g, because nested
intervals are preserved by monotone maps.21 Indeed, ℒint is a nominal set, although it
is not orbit-finite.

Informally, the language ℒint can be accepted by the automaton depicted in Fig-
ure 6.1. Here we allow the automaton to store rational numbers and compare them to

21 The G-action on words is defined point-wise: g(w1…wn) = (gw1)…(gwn).

Fast Computations on Ordered Nominal Sets 121

new symbols. For example, the transition from q2 to q3 is taken if any value c between
a and b is read and then the currently stored value a is replaced by c. For any other
value read at state q2 the automaton transitions to the sink state q4. Such a transition
structure is made precise by the notion of nominal automata.

q0 q1(a) q2(a, b) q3(a, b)

q4

a b > a

b ≤ a

a < c < b
a ← c

a < c < b
b ← c

c ≤ a c ≥ b
c ≤ a

c ≥ b

a

Figure 6.1 Example automaton that accepts the language ℒint.

Definition 19. A nominal language is an equivariant subset L ⊆ A∗ where A is an
orbit-finite nominal set.

Definition 20. A nominal deterministic finite automaton is a tuple (S,A, F, δ), where S is
an orbit-finite nominal set of states, A is an orbit-finite nominal set of symbols, F ⊆ S
is an equivariant subset of final states, and δ : S × A → S is the equivariant transition
function.

Given a state s ∈ S, we define the usual acceptance condition: a word w ∈ A∗ is
accepted if w denotes a path from s to a final state.

The automaton in Figure 6.1 can be formalised as a nominal deterministic finite automa-
ton as follows. Let S = {q0, q4}∪{q1(a) | a ∈ ℚ}∪{q2(a, b) | a < b ∈ ℚ}∪{q3(a, b) | a <
b ∈ ℚ} be the set of states, where the group action is defined as one would expect. The
transition we described earlier can now be formally defined as δ(q2(a, b), c) = q3(c, b)
for all a < c < b ∈ ℚ. By defining δ on all states accordingly and defining the final
states as F = {q2(a, b) | a < b ∈ ℚ}, we obtain a nominal deterministic automaton
(S,ℚ, F, δ). The state q0 accepts the language ℒint.

We implement two algorithms on nominal automata, minimisation and learning,
to benchmark Ons. The performance of Ons is compared to two existing libraries for
computing with nominal sets, Nλ and Lois. The following automata will be used.

Random automata

As a primary test suite, we generate random automata as follows. The input alphabet
is always ℚ and the number of orbits and dimension k of the state space S are fixed.

122 Chapter 6

For each orbit in the set of states, its dimension is chosen uniformly at random between
0 and k, inclusive. Each orbit has a probability 1

2 of consisting of accepting states.
To generate the transition function δ, we enumerate the orbits of S×ℚ and choose

a target state uniformly from the orbits Swith small enough dimension. The bit string
indicating which part of the support is preserved is then sampled uniformly from all
valid strings. Wewill denote these automata as randN(S),k. The choices made here are
arbitrary and only provide basic automata. We note that the automata are generated
orbit-wise and this may favour our tool.

Structured automata

Besides random automatawewish to test the algorithms onmore structured automata.
We define the following automata.

FIFO(𝐧) Automata accepting valid traces of a finite FIFO data structure of size n.
The alphabet is defined by two orbits: {Put(a) | a ∈ ℚ} and {Get(a) | a ∈ ℚ}.

𝐰𝐰(𝐧) Automata accepting the language of words of the form ww, where w ∈ ℚn.

𝓛max The language ℒmax = {wa ∈ ℚ∗ | a = max(w1, …,wn)} where the last symbol
is the maximum of previous symbols.

𝓛int The language accepting a series of nested intervals, as defined before.

In Table 6.3 we report the number of orbits for each automaton. The first two
classes of automata are described in Chapter 5. These two classes are also equivariant
w.r.t. the equality symmetry.

Extra structure allows the automata to be encoded more efficiently, as we do not
need to encode a transition for each orbit in S×A. Instead, a more symbolic encoding
is possible. Both Lois and Nλ allow to use this more symbolic representation. Our
tool, Ons, only works with nominal sets and the input data needs to be provided
orbit-wise. Where applicable, the automata listed above were generated using the
code from Moerman, et al. (2017), ported to the other libraries as needed.

4.1 Minimising nominal automata

For languages recognised by nominal DFAs, a Myhill-Nerode theorem holds which
relates states to right congruence classes. This guarantees the existence of unique
minimal automata. We say an automaton is minimal if its set of states has the least
number of orbits and each orbit has the smallest dimension possible.22 We generalise

22 Abstractly, an automaton is minimal if it has no proper quotients. Minimal deterministic automata are
unique up to isomorphism.

Fast Computations on Ordered Nominal Sets 123

Moore’s minimisation algorithm to nominal DFAs (Algorithm 6.1) and analyse its
time complexity using the bounds from Section 3.

Require: Nominal automatonM = (S,A, F, δ)
Ensure: Minimal nominal automaton equivalent toM

1 i ← 0
2 ≡−1 ← S× S
3 ≡0 ← F× F ∪ (S\F) × (S\F)
4 while ≡i ≠ ≡i−1do
5 ≡i+1 ← {(q1, q2) | (q1, q2) ∈ ≡i ∧ ∀a ∈ A, (δ(q1, a), δ(q2, a)) ∈ ≡i}
6 i ← i + 1
7 end while
8 E ← S/≡i

9 FE ← {e ∈ E | ∀s ∈ e, s ∈ F}
10 Let δE be the map such that, if s ∈ e and δ(s, a) ∈ e′, then δE(e, a) = e′
11 return (E,A, FE, δE)

Algorithm 6.1 Moore’s minimisation algorithm for nominal DFAs.

Theorem21. The runtime complexity ofMoore’s algorithmon nominal deterministic
automata is O(35kkN(S)3N(A)), where k = dim(S ∪ A).

Proof. This is shown by counting operations, using the complexity results of set
operations stated in Theorem 18. We first focus on the while loop on lines 4–7. The
runtime of an iteration of the loop is determined by line 5, as this is the most expensive
step. Since the dimensions of S and A are at most k, computing S × S × A takes
O(N(S)2N(A)35k). Filtering S × S using that then takes O(N(S)232k). The time to
compute S×S×A dominates, hence each iteration of the loop takesO(N(S)2N(A)35k).

Next, we need to count the number of iterations of the loop. Each iteration of the
loop gives rise to a new partition, refining the previous partition. Furthermore, every
partition generated is equivariant. Note that this implies that each refinement of the
partition does at least one of two things: distinguish between two orbits of S previously
in the same element(s) of the partition, or distinguish between two members of the
same orbit previously in the same element of the partition. The former can happen
only N(S) − 1 times, as after that there are no more orbits lumped together. The latter
can only happen dim(S) times per orbit, because each such a distinction between
elements is based on splitting on the value of one of the elements of the support.
Hence, after dim(S) times on a single orbit, all elements of the support are used up.
Combining this, the longest chain of partitions of S has length at most O(kN(S)).

Since each partition generated in the loop is unique, the loop cannot run for more
iterations than the length of the longest chain of partitions on S. It follows that

124 Chapter 6

there are at most O(kN(S)) iterations of the loop, giving the loop a complexity of
O(kN(S)3N(A)35k)

The remaining operations outside the loop have a lower complexity than that
of the loop, hence the complexity of Moore’s minimisation algorithm for a nominal
automaton is O(kN(S)3N(A)35k). □

The above theorem shows in particular that minimisation of nominal automata is fixed-
parameter tractable (FPT) with the dimension as fixed parameter. The complexity of
Algorithm 6.1 for nominal automata is very similar to the O((#S)3 # A) bound given
by a naive implementation of Moore’s algorithm for ordinary DFAs. This suggest that
it is possible to further optimise an implementation with similar techniques used for
ordinary automata.

Implementations

We implemented the minimisation algorithm in Ons. For Nλ and Lois we used their
implementations of Moore’s minimisation algorithm (Klin & Szynwelski, 2016 and
Kopczyński & Toruńczyk, 2016 and 2017). For each of the libraries, we wrote routines
to read in an automaton from a file and, for the structured test cases, to generate the
requested automaton. For Ons, all automata were read from file. The output of these
programs was manually checked to see if the minimisation was performed correctly.

Results

The results (shown in Table 6.3) for random automata show a clear advantage for
Ons, which is capable of running all supplied testcases in less than one second. This
in contrast to both Lois and Nλ, which take more than 2 hours on the largest random
automata.

The results for structured automata show a clear effect of the extra structure. Both
Nλ and Lois remain capable of minimising the automata in reasonable amounts of
time for larger sizes. In contrast, Ons benefits little from the extra structure. Despite
this, it remains viable: even for the larger cases it falls behind significantly only for
the largest FIFO automaton and the two largest ww automata.

4.2 Learning nominal automata

Another application that we implemented in Ons is automata learning. The aim of
automata learning is to infer an unknown regular language ℒ. We use the framework
of active learning as set up by Angluin (1987) where a learning algorithm can query
an oracle to gather information about ℒ. Formally, the oracle can answer two types of
queries:

Fast Computations on Ordered Nominal Sets 125

Type N(S) N(Smin) Ons (s) Gen (s) Nλ (s) Lois (s)
rand5,1 (x10) 5 n/a 0.02 n/a 0.82 3.14
rand10,1 (x10) 10 n/a 0.03 n/a 17.03 92
rand10,2 (x10) 10 n/a 0.09 n/a 2114 ∞
rand15,1 (x10) 15 n/a 0.04 n/a 87 620
rand15,2 (x10) 15 n/a 0.11 n/a 3346 ∞
rand15,3 (x10) 15 n/a 0.46 n/a ∞ ∞
FIFO(2) 13 6 0.01 0.01 1.37 0.24
FIFO(3) 65 19 0.38 0.09 11.59 2.4
FIFO(4) 440 94 39.11 1.60 76 14.95
FIFO(5) 3686 635 ∞ 39.78 402 71
ww(2) 8 8 0.00 0.00 0.14 0.03
ww(3) 24 24 0.19 0.02 0.88 0.16
ww(4) 112 112 26.44 0.25 3.41 0.61
ww(5) 728 728 ∞ 6.37 10.54 1.80
ℒmax 5 3 0.00 0.00 2.06 0.03
ℒint 5 5 0.00 0.00 1.55 0.03

Table 6.3 Running times for Algorithm 6.1 implemented in the three li-
braries. N(S) is the size of the input and N(Smin) the size of the minimal
automaton. For Ons, the time used to generate the automaton is reported
separately (in grey). Timeouts are indicated by∞.

– membership queries, where a query consists of a word w ∈ A∗ and the oracle replies
whether w ∈ ℒ, and

– equivalence queries, where a query consists of an automatonℋ and the oracle replies
positively if ℒ(ℋ) = ℒ or provides a counterexample if ℒ(ℋ) ≠ ℒ.

With these queries, the L∗ algorithm can learn regular languages efficiently (Angluin,
1987). In particular, it learns the unique minimal automaton for ℒ using only finitely
many queries. The L∗ algorithm has been generalised to νL∗ in order to learn nominal
regular languages. In particular, it learns a nominal DFA (over an infinite alphabet)
using only finitely many queries. We implement νL∗ in the presented library and com-
pare it to its previous implementation in Nλ. The algorithm is not polynomial, unlike
the minimisation algorithm described above. However, the authors conjecture that
there is a polynomial algorithm.23 For the correctness, termination, and comparison
with other learning algorithms see Chapter 5.

23 See https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html for a sketch of the
polynomial algorithm.

https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html

126 Chapter 6

Implementations

Both implementations in Nλ and Ons are direct implementations of the pseudocode
for νL∗ with no further optimisations. The authors of Lois implemented νL∗ in their
library as well.24 They reported similar performance as the implementation in Nλ
(private communication). Hence we focus our comparison on Nλ and Ons. We use
the variant of νL∗ where counterexamples are added as columns instead of prefixes.

The implementation in Nλ has the benefit that it can work with different sym-
metries. Indeed, the structured examples, FIFO and ww, are equivariant w.r.t. the
equality symmetry as well as the total order symmetry. For that reason, we run the
Nλ implementation using both the equality symmetry and the total order symmetry
on those languages. For the languages ℒmax, ℒint and the random automata, we can
only use the total order symmetry.

To run the νL∗ algorithm, we implement an external oracle for the membership
queries. This is akin to the application of learning black box systems (see Vaandrager,
2017). For equivalence queries, we constructed counterexamples by hand. All imple-
mentations receive the same counterexamples. We measure CPU time instead of real
time, so that we do not account for the external oracle.

Results

The results (Table 6.4) for random automata show an advantage for Ons. Additionally,
we report the number ofmembership queries, which can vary for each implementation
as some steps in the algorithm depend on the internal ordering of set data structures.

In contrast to the case of minimisation, the results suggest that Nλ cannot exploit
the logical structure of FIFO(n), ℒmax and ℒint as it is not provided a priori. For ww(2)
we inspected the output on Nλ and saw that it learned some logical structure (e.g.,
it outputs {(a, b) | a ≠ b} as a single object instead of two orbits {(a, b) | a < b} and
{(a, b) | b < a}). This may explain why Nλ is still competitive. For languages which
are equivariant for the equality symmetry, the Nλ implementation using the equality
symmetry can learn with much fewer queries. This is expected as the automata
themselves have fewer orbits. It is interesting to see that these languages can be
learned more efficiently by choosing the right symmetry.

5 Related work
As stated in the introduction, NλbyKlin and Szynwelski (2016) andLois byKopczyński
and Toruńczyk (2016) use first-order formulas to represent nominal sets and use SMT
solvers to manipulate them. This makes both libraries very flexible and they indeed

24 Can be found on https://github.com/eryxcc/lois/blob/master/tests/learning.cpp.

https://github.com/eryxcc/lois/blob/master/tests/learning.cpp

Fast Computations on Ordered Nominal Sets 127

Ons Nλord Nλeq

Model N(S) dim(S) time (s) MQs time (s) MQs time (s) MQs
rand5,1 4 1 127 2321 2391 1243
rand5,1 5 1 0.12 404 2434 435
rand5,1 3 0 0.86 499 1819 422
rand5,1 5 1 ∞ n/a ∞ n/a
rand5,1 4 1 0.08 387 2097 387
FIFO(1) 3 1 0.04 119 3.17 119 1.76 51
FIFO(2) 6 2 1.73 2655 392 3818 40.00 434
FIFO(3) 19 3 2794 298400 ∞ n/a 2047 8151
ww(1) 4 1 0.42 134 2.49 77 1.47 30
ww(2) 8 2 266 3671 228 2140 30.58 237
ww(3) 24 3 ∞ n/a ∞ n/a ∞ n/a
ℒmax 3 1 0.01 54 3.58 54
ℒint 5 2 0.59 478 83 478

Table 6.4 Running times and number of membership queries for the νL∗ algorithm.
For Nλ we used two version: Nλord uses the total order symmetry Nλeq uses the
equality symmetry. Timeouts are indicated by∞.

implement the equality symmetry as well as the total order symmetry. As their rep-
resentation is not unique, the efficiency depends on how the logical formulas are
constructed. As such, they do not provide complexity results. In contrast, our di-
rect representation allows for complexity results (Section 3) and leads to different
performance characteristics (Section 4).

A second big difference is that both Nλ and Lois implement a “programming par-
adigm” instead of just a library. This means that they overload natural programming
constructs in their host languages (Haskell and C++ respectively). For programmers
this means they can think of infinite sets without having to know about nominal sets.

It is worth mentioning that an older (unreleased) version of Nλ implemented
nominal sets with orbits instead of SMT solvers (Bojańczyk, et al., 2012). However,
instead of characterising orbits (e.g., by its dimension), they represent orbits by a
representative element. Klin and Szynwelski (2016) reported that the current version
is faster.

The theoretical foundation of our work is the main representation theorem by
Bojańczyk, et al. (2014). We improve on that by instantiating it to the total order
symmetry and distil a concrete representation of nominal sets. As far as we know, we
provide the first implementation of their representation theory.

Another tool using nominal sets is Mihda by Ferrari, et al. (2005). Here, only the
equality symmetry is implemented. This tool implements a translation from π-calculus
to history-dependent automata (HD-automata) with the aim of minimisation and
checking bisimilarity. The implementation in OCaml is based on named sets, which
are finite representations for nominal sets. The theory of named sets is well-studied

128 Chapter 6

and has been used to model various behavioural models with local names. For those
results, the categorical equivalences between named sets, nominal sets and a certain
(pre)sheaf category have been exploited (Ciancia, et al., 2010 andCiancia&Montanari,
2010). The total order symmetry is not mentioned in their work. We do, however,
believe that similar equivalences between categories can be stated. Interestingly, the
product of named sets is similar to our representation of products of nominal sets:
pairs of elements together with data which denotes the relation between data values.

Fresh OCaml by Shinwell and Pitts (2005) and Nominal Isabelle by Urban and
Tasson (2005) are both specialised in name-binding and α-conversion used in proof
systems. They only use the equality symmetry and do not provide a library for
manipulating nominal sets. Hence they are not suited for our applications.

On the theoretical side, there are many complexity results for register automata
(Grigore & Tzevelekos, 2016 and Murawski, et al., 2015). In particular, we note that
problems such as emptiness and equivalence are NP-hard depending on the type of
register automaton. Recently, Murawski, et al. (2018) showed that equivalence of
unique-valued deterministic register automata can be decided in polynomial time.
These results do not easily compare to our complexity results for minimisation. One
difference is that we use the total order symmetry, where the local symmetries are
always trivial (Lemma 3). As a consequence, all the complexity required to deal with
groups vanishes. Rather, the complexity is transferred to the input of our algorithms,
because automata over the equality symmetry require more orbits when expressed
over the total order symmetry. Another difference is that register automata allow for
duplicate values in the registers. In nominal automata, such configurations will be
encoded in different orbits.

Orthogonal to nominal automata, there is the notion of symbolic automata (D’An-
toni & Veanes, 2017 and Maler & Mens, 2017). These automata are also defined
over infinite alphabets but they use predicates on transitions, instead of relying on
symmetries. Symbolic automata are finite state (as opposed to infinite state nominal
automata) and do not allow for storing values. However, they do allow for general
predicates over an infinite alphabet, including comparison to constants.

6 Conclusion and Future Work
We presented a concrete finite representation for nominal sets over the total order
symmetry. This allowed us to implement a library, Ons, and provide complexity
bounds for common operations. The experimental comparison of Ons against existing
solutions for automata minimisation and learning show that our implementation is
much faster inmany instances. As such, we believeOns is a promising implementation
of nominal techniques.

A natural direction for future work is to consider other symmetries, such as the
equality symmetry. Here, we may take inspiration from existing tools such as Mihda

Fast Computations on Ordered Nominal Sets 129

(see Section 5). Another interesting question is whether it is possible to translate a
nominal automaton over the total order symmetry which accepts an equality language
to an automaton over the equality symmetry. This would allow one to efficiently move
between symmetries. Finally, our techniques can potentially be applied to timed
automata by exploiting the intriguing connection between the nominal automata that
we consider and timed automata (Bojańczyk & Lasota, 2012).

Acknowledgement
We would like to thank Szymon Toruńczyk and Eryk Kopczyński for their prompt
help when using the Lois library. For general comments and suggestions we would
like to thank Ugo Montanari and Niels van der Weide. At last, we want to thank the
anonymous reviewers for their comments.

130 Chapter 6

Chapter 7
Separation and Renaming in Nominal Sets

Joshua Moerman
Radboud University

Jurriaan Rot
Radboud University

Abstract
Nominal sets provide a foundation for reasoning about names. They
are used primarily in syntax with binders, but also, e.g., to model au-
tomata over infinite alphabets. In this chapter, nominal sets are related
to nominal renaming sets, which involve arbitrary substitutions rather
than permutations, through a categorical adjunction. In particular, the
separated product of nominal sets is related to the Cartesian product
of nominal renaming sets. Based on these results, we define the new
notion of separated nominal automata. These efficiently recognise nominal
languages, provided these languages are renaming sets. In such cases,
moving from the existing notion of nominal automata to separated au-
tomata can lead to an exponential reduction of the state space.

This chapter is based on the following submission:
Moerman, J. & Rot, J. (2019). Separation and Renaming in Nominal Sets. (Under submis-
sion)

132 Chapter 7

Nominal sets are abstract sets which allow one to reason over sets with names, in terms
of permutations and symmetries. Since their introduction in computer science by
Gabbay and Pitts (1999), they have been widely used for implementing and reasoning
over syntax with binders (see the book of Pitts, 2013). Further, nominal techniques
have been related to computability theory (Bojańczyk, et al., 2013) and automata
theory (Bojańczyk, et al., 2014), where they provide an elegant means of studying
languages over infinite alphabets. This embeds nominal techniques in a broader
setting of symmetry aware computation (Pitts, 2016).

Gabbay, one of the pioneers of nominal techniques described a variation on the
theme: nominal renaming sets (Gabbay, 2007 and Gabbay & Hofmann, 2008). Nominal
renaming sets are equipped with a monoid action of arbitrary (possibly non-injective)
substitution of names, in contrast to nominal sets, which only involve a group action
of permutations.

In this paper, themotivation for using nominal renaming sets comes from automata
theory over infinite alphabets. Certain languages form nominal renaming sets, which
means that they are closed under all possible substitutions on atoms. In order to obtain
efficient automata-theoretic representations of such languages, we systematically
relate nominal renaming sets to nominal sets.

We start by establishing a categorical adjunction in Section 2:

Pm-Nom ⊥ Sb-Nom

F

U

where Pm-Nom is the usual category of nominal sets and Sb-Nom the category of
nominal renaming sets. The right adjoint U simply forgets the action of non-injective
substitutions. The left adjoint F freely extends a nominal set with elements represent-
ing the application of such substitutions. For instance, Fmaps the nominal set 𝔸(∗) of
all words consisting of distinct atoms to the nominal renaming set 𝔸∗ consisting of all
words over the atoms.

In fact, the latter follows from one of the main results of this paper: F maps the
separated product X ∗ Y of nominal sets to the Cartesian product of nominal renaming
sets. Additionally, under certain conditions, Umaps the exponent to the magic wand
X −−∗ Y, which is the right adjoint of the separated product. The separated product
consists of those pairs whose elements have disjoint supports. This is relevant for
name abstraction (Pitts, 2013), and has also been studied in the setting of presheaf
categories, aimed towards separation logic (O’Hearn, 2003).

We apply these connections between nominal sets and renaming sets in the context
of automata theory. Nominal automata are an elegantmodel for recognising languages
over infinite alphabets. They are expressively equivalent to the more classical register
automata (Bojańczyk, 2018, Theorem 6.5), and have appealing properties that register
automata lack, such as unique minimal automata. However, moving from register

Separation and Renaming in Nominal Sets 133

automata to nominal automata can lead to an exponential blow-up in the number of
states.25

As a motivating example, we consider a language modelling an n-bounded FIFO
queue. The input alphabet is given by Σ = {Put(a) | a ∈ 𝔸} ∪ {Pop}, and the output
alphabet by O = 𝔸 ∪ {⊥} (here ⊥ is a null value). The language Ln : Σ∗ → O maps
a sequence of queue operations to the resulting top element when starting from the
empty queue, or to ⊥ if this is undefined. The language Ln can be recognised by a
nominal automaton, but this requires an exponential number of states in n, as the
automaton distinguishes internally between all possible equalities among elements in
the queue.

Based on the observation that Ln is a nominal renaming set, we can come up with
a linear automata-theoretic representation. To this end, we define the new notion of
separated nominal automaton, where the transition function is only defined for pairs
of states and letters with a disjoint support (Section 3). Using the aforementioned
categorical framework, we find that such separated automata recognise languages
which are nominal renaming sets. Although separated nominal automata are not as
expressive as classical nominal automata, they can be much smaller. In particular, in
the FIFO example, the reachable part of the separated automaton obtained from the
original nominal automaton has n + 1 states, thus dramatically reducing the number
of states. We expect that such a reduction is useful in many applications, such as
automata learning (Chapter 5).

In summary, the main contributions of this paper are the adjunction between
nominal sets and nominal renaming sets, the relation between separated product and
the Cartesian product of renaming sets, and the application to automata theory. We
concludewith a coalgebraic account of separated automata in Section 3.1. In particular,
we justify the semantics of separated automata by showing how it arises through a
final coalgebra, obtained by lifting the adjunction to categories of coalgebras. The last
section is orthogonal to the other results, and background knowledge of coalgebra is
needed only there.

1 Monoid actions and nominal sets
In order to capture both the standard notion of nominal sets by Pitts (2013) and sets
with more general renaming actions by Gabbay and Hofmann (2008), we start by
defining monoid actions.

Definition 1. Let (M, ⋅, 1) be a monoid. AnM-set is a set X together with a function
⋅ : M × X → X such that 1 ⋅ x = x and m ⋅ (n ⋅ x) = (m ⋅ n) ⋅ x for all m,n ∈ M and
x ∈ X. The function ⋅ is called anM-action andm ⋅ x is often written by juxtaposition
mx. A function f : X → Y between twoM-sets isM-equivariant ifm ⋅ f(x) = f(m ⋅ x) for

25 Here ‘number of states’ refers to the number of orbits in the state space.

134 Chapter 7

all m ∈ M and x ∈ X. The class of M-sets together with equivariant maps forms a
categoryM-Set.

Let 𝔸 = {a, b, c,…} be a countable infinite set of atoms. The two main instances ofM
considered in this paper are the monoid

Sb = {m : 𝔸 → 𝔸 | m(a) ≠ a for finitely many a}

of all (finite) substitutions (with composition as multiplication), and the monoid

Pm = {g ∈ Sb | g is a bijection}

of all (finite) permutations. Since Pm is a submonoid of Sb, any Sb-set is also a Pm-set;
and any Sb-equivariant map is also Pm-equivariant. This gives rise to a forgetful
functor

U : Sb-Set → Pm-Set.

The set 𝔸 is an Sb-set by defining m ⋅ a = m(a). Given an M-set X, the set 𝒫(X) of
subsets of X is anM-set, with the action defined by direct image.

For a Pm-set X, the orbit of an element x is the set orb(x) = {g ⋅ x | g ∈ Pm}. We say
X is orbit-finite if the set {orb(s) | x ∈ X} is finite.

For anymonoidM, the categoryM-Set is symmetricmonoidal closed. The product
of twoM-sets is given by the Cartesian product, with the action defined pointwise:
m⋅(x, y) = (m⋅x,m⋅y). InM-Set, the exponent X →M Y is given by the set {f : M×X →
Y | f is equivariant}.26 The action on such an f : M × X → Y is defined by (m ⋅ f)(n, x) =
f(mn, x). A good introduction to the construction of the exponent is given by Simmons
(n.d.). IfM is a group, a simpler description of the exponent may be given, carried by
the set of all functions f : X → Y, with the action given by (g ⋅ f)(x) = g ⋅ f(g−1 ⋅ x).

1.1 NominalM-sets

The notion of nominal set is usually defined w.r.t. a Pm-action. Here, we use the
generalisation to Sb-actions from Gabbay and Hofmann (2008). Throughout this
section, letM denote a submonoid of Sb.

Definition 2. Let X be anM-set, and x ∈ X an element. A setC ⊂ 𝔸 is an (M-)support
of x if for allm1,m2 ∈ M s.t.m1|C = m2|C we havem1x = m2x. AnM-set X is called
nominal if every element x has a finiteM-support.

NominalM-sets and equivariant maps form a full subcategory ofM-Set, denoted by
M-Nom. TheM-set 𝔸 of atoms is nominal. The powerset 𝒫(X) of a nominal set is not
nominal in general; the restriction to finitely supported elements is.

26 If we write a regular arrow →, then we mean a map in the category. Exponent objects will always be
denoted by annotated arrows.

Separation and Renaming in Nominal Sets 135

IfM is a group, then the notion of support can be simplified by using inverses.
To see this, first note that, given elements g1, g2 ∈ M, g1|C = g2|C can equivalently
be written as g1g−1

2 |C = id|C. Second, the statement xg1 = xg2 can be expressed as
xg1g−1

2 = x. Hence, C is a support iff g|C = idC implies gx = x for all g, which is the
standard definition for nominal sets over a group (Pitts, 2013). Surprisingly, Gabbay
and Hofmann (2008) show a similar characterisation also holds for Sb-sets. Moreover,
recall that every Sb-set is also a Pm-set; the associated notions of support coincide on
nominal Sb-sets, as shown by the following result. In particular, this means that the
forgetful functor restricts to U : Sb-Nom → Pm-Nom.

Lemma 3. (Theorem 4.8 from Gabbay, 2007) Let X be a nominal Sb-set, x ∈ X, and
C ⊂ 𝔸. Then C is an Sb-support of x iff it is a Pm-support of x.

Remark 4. It is not true that any Pm-support is an Sb-support. The condition that
X is nominal, in the above lemma, is crucial. Let X = 𝔸+ 1 and define the following
Sb-action: m ⋅ a = m(a) ifm is injective,m ⋅ a = ∗ ifm is non-injective, andm ⋅ ∗ = ∗.
This is a well-defined Sb-set, but is not nominal. Now consider U(X), this is the Pm-set
𝔸 + 1 with the natural action, which is a nominal Pm-set! In particular, as a Pm-set
each element has a finite support, but as a Sb-set the supports are infinite.

This counterexample is similar to the “exploding nominal sets” of Gabbay (2007),
but evenworse behaved. We like to call them nuclear sets, since an elementwill collapse
when hit by a non-injective map, no matter how far away the non-injectivity occurs.

ForM ∈ {Sb,Pm}, any element x ∈ X of a nominalM-set X has a least finite support
(w.r.t. set inclusion). We denote the least finite support of an element x ∈ X by
supp(x). Note that by Lemma 3, the set supp(x) is independent of whether a nominal
Sb-set X is viewed as an Sb-set or a Pm-set. The dimension of X is given by dim(X) =
max{|supp(x)| | x ∈ X}, where |supp(x)| is the cardinality of supp(x).

We list some basic properties of nominalM-sets, which have known counterparts
for the case thatM is a group (Bojańczyk, et al., 2014), and whenM = Sb (Gabbay &
Hofmann, 2008).

Lemma 5. Let X be anM-nominal set. If C supports an element x ∈ X, then m ⋅ C
supports m ⋅ x for all m ∈ M. Moreover, any g ∈ Pm preserves least supports: g ⋅
supp(x) = supp(gx).

The latter equality does not hold in general for amonoidM. For instance, the exploding
nominal renaming sets by Gabbay and Hofmann (2008) give counterexamples for
M = Sb.

Lemma 6. GivenM-nominal sets X, Y and a map f : X → Y, if f isM-equivariant and
C supports an element x ∈ X, then C supports f(x).

136 Chapter 7

The categoryM-Nom is symmetric monoidal closed, with the product inherited from
M-Set, thus simply given by Cartesian product. The exponent is given by the restric-
tion of the exponent X →M Y inM-Set to the set of finitely supported functions, de-
noted byX →M

fs Y. This is similar to the exponents of nominal setswith 01-substitutions
from Pitts (2014).

Remark 7. Gabbay and Hofmann (2008) give a different presentation of the ex-
ponent inM-Nom, based on a certain extension of partial functions. We prefer the
previous characterisation, as it is derived in a straightforward way from the exponent
inM-Set.

1.2 Separated product

Definition 8. Two elements x, y ∈ X of a Pm-nominal set are called separated, denoted
by x # y, if there are disjoint sets C1, C2 ⊂ 𝔸 such that C1 supports x and C2 supports
y. The separated product of Pm-nominal sets X and Y is defined as

X ∗ Y = {(x, y) | x # y}.

We extend the separated product to the separated power, defined by X(0) = 1 and
X(n+1) = X(n) ∗ X, and the set of separated words X(∗) = ⋃i X(i). The separated product
is an equivariant subset X ∗ Y ⊆ X × Y. Consequently, we have equivariant projection
maps X ∗ Y → X and X ∗ Y → Y.

Example 9. Two finite sets C,D ⊂ 𝔸 are separated precisely when they are disjoint.
An important example is the set 𝔸(∗) of separated words over the atoms: it consists of
those words where all letters are distinct.

The separated product gives rise to another symmetric closed monoidal structure
on Pm-Nom, with 1 as unit, and the exponential object given by magic wand X −−∗ Y.
An explicit characterisation of X −−∗ Y is not needed in the remainder of this chapter,
but for a complete presentation we briefly recall the description from Schöpp (2006)
(see also the book of Pitts, 2013 and the paper of Clouston, 2013). First, define a
Pm-action on the set of partial functions f : X ⇀ Y by (g ⋅ f)(x) = g ⋅ f(g−1 ⋅ x) if f(g−1 ⋅ x)
is defined. Now, such a partial function f : X ⇀ Y is called separating if f is finitely
supported, f(x) is defined iff f # x, and supp(f) = ⋃x∈dom(f) supp(f(x)) ∖ supp(x).
Finally, X −−∗ Y = {f : X ⇀ Y | f is separating}. We refer to the thesis of Schöpp (2006)
(Section 3.3.1) for a proof and explanation.

Remark 10. The special case 𝔸 −−∗ Y coincides with [𝔸]Y, the set of name abstractions
(Pitts, 2013). The latter is generalised to [X]Y by Clouston (2013), but it is shown there
that the coincidence [X]Y ≅ (X −−∗ Y) only holds under strong assumptions (including
that X is single-orbit).

Separation and Renaming in Nominal Sets 137

Remark 11. An analogue of the separated product does not seem to exist for nominal
Sb-sets. For instance, consider the set 𝔸 × 𝔸. As a Pm-set, it has four equivariant
subsets: ∅,Δ(𝔸) = {(a, a) | a ∈ 𝔸}, 𝔸 ∗ 𝔸, and 𝔸×𝔸. However, the set 𝔸 ∗ 𝔸 is not
an equivariant subset when considering 𝔸×𝔸 as an Sb-set.

2 A monoidal construction from Pm-sets to Sb-sets
In this section, we provide a free construction, extending nominal Pm-sets to nominal
Sb-sets. We use this as a basis to relate the separated product and exponent (in
Pm-Nom) to the product and exponent in Sb-Nom. The main results are:
– the forgetful functor U : Sb-Nom → Pm-Nom has a left adjoint F (Theorem 16);
– this F is monoidal: it maps separated products to products (Theorem 17);
– U maps the exponent object in Sb-Nom to the right adjoint −−∗ of the separated

product, if the domain has dimension ≤ 1 (Theorem 24, Corollary 25).

Together, these results form the categorical infrastructure to relate nominal languages
to separated languages and automata in Section 3.

Definition 12. Given a Pm-nominal set X, we define a nominal Sb-set F(X) as follows.
Define the set

F(X) = {(m, x) | m ∈ Sb, x ∈ X}/∼,

where ∼ is the least equivalence relation containing:

(m, gx) ∼ (mg, x),

(m, x) ∼ (m′, x) ifm|C = m′|C for a Pm-support C of x,

for all x ∈ X,m,m′ ∈ Sb and g ∈ Pm. The equivalence class of a pair (m, x) is denoted
by [m, x]. We define an Sb-action on F(X) as n ⋅ [m, x] = [nm, x].

Well-definedness is proved as part of Proposition 15 below. Informally, an equivalence
class [m, x] ∈ F(X) behaves “as if m acted on x”. The first equation of ∼ ensures
compatibility with the Pm-action on x, and the second equation ensures that [m, x]
only depends the relevant part ofm. The following characterisation of ∼ is useful in
proofs.

Lemma 13. We have (m1, x1) ∼ (m2, x2) iff there is a permutation g ∈ Pm such that
gx1 = x2 andm1|C = m2g|C, for C some Pm-support of x1.

Remark 14. The first relation of ∼ in Definition 12 comes from the construction of
“extension of scalars” in commutative algebra (see Atiyah & MacDonald, 1969). In
that context, one has a ring homomorphism f : A → B and anA-moduleM and wishes

138 Chapter 7

to obtain a B-module. This is constructed by the tensor product B⊗AM and it is here
that the relation (b, am) ∼ (ba,m) is used (B is a right A-module via f).

Proposition 15. The construction F in Definition 12 extends to a functor

F : Pm-Nom → Sb-Nom,

defined on an equivariant map f : X → Y by F(f)([m, x]) = [m, f(x)] ∈ F(Y).

Proof. We first prove well-definedness and then the functoriality.

𝐅(𝐗) is an Sb-set. To this end we check that the Sb-action is well-defined. Let
[m1, x1] = [m2, x2] ∈ F(X) and let m ∈ Sb. By Lemma 13, there is some permuta-
tion g such that gx1 = x2 and m1|C = m2g|C for some support C of x1. By post-
composition with m we get mm1|C = mm2g|C, which means (again by the lemma)
that [mm1, x1] = [mm2, x2]. Thus m[m1, x1] = m[m2, x2], which concludes well-
definedness.

For associativity and unitality of the Sb-action, we simply note that it is directly
defined by left multiplication of Sb which is associative and unital. This concludes
that F(X) is an Sb-set.

𝐅(𝐗) is a nominal Sb set. Given an element [m, x] ∈ F(X) and a Pm-support C of x,
we will prove thatm⋅C is an Sb-support for [m, x]. Suppose that we havem1,m2 ∈ Sb
such thatm1|m⋅C = m2|m⋅C. By pre-composition withmwe getm1m|C = m2m|C and
this leads us to conclude [m1m,x] = [m2m,x]. Som1[m, x] = m2[m, x] as required.

Functoriality. Let f : X → Y be a Pm-equivariant map. To see that F(f) is well-
defined consider [m1, x1] = [m2, x2]. By Lemma 13, there is a permutation g such
that gx1 = x2 and m1|C = m2g|C for some support C of x1. Applying F(f) gives on
one hand [m1, f(x1)] and on the other hand [m2, f(x2)] = [m2, f(gx1)] = [m2, gf(x1)] =
[m2g, f(x1)] (we used equivariance in the second step). Since m1|C = m2g|C and f
preserves supports we have [m2g, f(x1)] = [m1, f(x1)].

For Sb-equivariance we consider both n ⋅ F(f)([m, x]) = n[m, f(x)] = [nm, f(x)] and
F(f)(n⋅ [m, x]) = F(f)([nm, x]) = [nm, f(x)]. This shows that nF(f)([m, x]) = F(f)(n[m, x])
and concludes that we have a map F(f) : F(X) → F(Y).

The fact that F preserves the identity function and composition follows from the
definition directly. □

Theorem 16. The functor F is left adjoint to U:

Pm-Nom ⊥ Sb-Nom

F

U

Separation and Renaming in Nominal Sets 139

Proof. We show that, for every nominal set X, there is a map ηX : X → UF(X) with
the necessary universal property: for every Pm-equivariant f : X → U(Y) there is
a unique Sb-equivariant map f♯ : FX → Y such that U(f♯) ∘ ηX = f. Define ηX by
ηX(x) = [id, x]. This is equivariant: g ⋅ ηX(x) = g[id, x] = [g, x] = [id, gx] = ηX(gx).
Now, for f : X → U(Y), define f♯([m, x]) = m ⋅ f(x) for x ∈ X and m ∈ Sb. Then
U(f♯) ∘ ηX(x) = f♯([id, x]) = id ⋅ f(x) = f(x).

To show that f♯ is well-defined, consider [m1, x1] = [m2, x2] (we have to prove
that m1 ⋅ f(x1) = m2 ⋅ f(x2)). By Lemma 13, there is a g ∈ Pm such that gx1 = x2
and m2g|C = m1|C for a Pm-support C of x1. Now C is also a Pm-support for f(x)
and hence it is an Sb-support of f(x) (Lemma 3). We conclude that m2 ⋅ f(x2) =
m2 ⋅ f(gx1) = m2g ⋅ f(x1) = m1 ⋅ f(x1) (we use Pm-equivariance in the one but last step
and Sb-support in the last step). Finally, Sb-equivariance of f♯ and uniqueness are
straightforward calculations. □

The counit ϵ : FU(Y) → Y is defined by ϵ([m, x]) = m ⋅ x. For the inverse of −♯, let
g : F(X) → Y be an Sb-equivariant map; then g♭ : X → U(Y) is given by g♭(x) = g([id, x]).
Note that the unit η is a Pm-equivariant map, hence it preserves supports (i.e., any
support of x also supports [id, x]). This also means that if C is a support of x, then
m ⋅ C is a support of [m, x] (by Lemma 5).

2.1 On (separated) products

The functor F not only preserves coproducts, being a left adjoint, but it also maps the
separated product to products:

Theorem 17. The functor F is strong monoidal, from the monoidal category
(Pm-Set, ∗ , 1) to (Sb-Set,×, 1). In particular, the map p given by

p = ⟨F(π1), F(π2)⟩ : F(X ∗ Y) → F(X) × F(Y)

is an isomorphism, natural in X and Y.

Proof. We prove that p is an isomorphism. It suffices to show that p is injective and
surjective. Note that p([m, (x, y)]) = ([m, x], [m, y]).

Surjectivity. Let ([m1, x], [m2, y]) be an element of F(X) × F(Y). We take an element
y′ ∈ Y such that y′ # supp(x) and y′ = gy for some g ∈ Pm. Now we have an element
(x, y′) ∈ X ∗ Y. By Lemma 5, we have supp(y′) = supp(y). Define the map

m(x) =
⎧⎪
⎨⎪
⎩

m1(x) if x ∈ supp(x)
m2(g−1(x)) if x ∈ supp(y′)
x otherwise.

(Observe that supp(x) # supp(y′), so the cases are not overlapping.) The mapm is an
element of Sb. Now consider the element z = [m, (x, y′)] ∈ F(X ∗ Y). Applying p to z

140 Chapter 7

gives the element ([m, x], [m, y′]). First, we note that [m, x] = [m1, x] by the definition
ofm. Second, we show that [m, y′] = [m2, y]. Observe thatmg|supp(y) = m2|supp(y)
by definition of m. Since supp(y) is a support of y, we have [mg, y] = [m2, y], and
since [mg, y] = [m, gy] = [m, y′]we are done. Hence p([m, (x, y′)]) = ([m, x], [m, y′]) =
([m1, x], [m2, y]), so p is surjective.

Injectivity. Let [m1, (x1, y1)] and [m2, (x2, y2)] be two elements. Suppose that they
are mapped to the same element, i.e., [m1, x1] = [m2, x2] and [m1, y1] = [m2, y2]. Then
there are permutations gx, gy such that x2 = gxx1 and y2 = gyy1. Moreover, let
C = supp(x1) and D = supp(y1); then we have m1|C = m2gx|C and m1|D = m2gy|D.
In order to show the two original elements are equal, we have to provide a single
permutation g. Define for, z ∈ C ∪ D,

g0(z) =
{
gx(z) if z ∈ C
gy(z) if z ∈ D.

(Again, C andD are disjoint.) The function g0 is injective since the least supports of x2
and y2 are disjoint. Hence g0 defines a local isomorphism from C∪D to g0(C∪D). By
homogeneity (Pitts, 2013), the map g0 extends to a permutation g ∈ Pm with g(z) =
gx(z) for z ∈ C and g(z) = gy(z) for z ∈ D. In particular we get (x2, y2) = g(x1, y1). We
also obtainm1|C∪D = m2g|C∪D. This proves that [m1, (x1, y1)] = [m2, (x2, y2)], and so
the map p is injective.

Unit and coherence. To show that F preserves the unit, we note that [m, 1] = [m′, 1]
for everym,m′ ∈ Sb, as the empty set supports 1 and som|∅ = m′|∅ vacuously holds.
We conclude F(1) is a singleton. By the definition p([m, (x, y)]) = ([m, x], [m, y]), one
can check the coherence axioms elementary. □

Since F also preserves coproducts (being a left adjoint), we obtain that Fmaps the set
of separated words to the set of all words.

Corollary 18. For any Pm-nominal set X, we have F(X(∗)) ≅ (FX)∗.

As we will show below, the functor F preserves the set 𝔸 of atoms. This is an instance
of a more general result about preservation of one-dimensional objects.

Lemma 19. The functors F and U are equivalences on ≤ 1-dimensional objects. Con-
cretely, for X ∈ Pm-Nom and Y ∈ Sb-Nom:
– If dim(X) ≤ 1, then the unit η : X → UF(X) is an isomorphism.
– If dim(Y) ≤ 1, then the co-unit ϵ : FU(X) → X is an isomorphism.

Beforeweprove this lemma,weneed the following technical property of≤ 1-dimensional
Sb-sets.

Separation and Renaming in Nominal Sets 141

Lemma 20. Let Y be a nominal Sb-set. If an element y ∈ Y is supported by a singleton
set (or even the empty set), then

{my | m ∈ Sb} = {gy | g ∈ Pm}.

Proof. Let y ∈ Y be supported by {a} and letm ∈ Sb. Now consider b = m(a) and the
bijection g = (ab). Nowm|{a} = g|{a}, meaning thatmy = gy. So the set {my | m ∈ Sb}
is contained in {gy | g ∈ Pm}. The inclusion the other way is trivial, which means
{my | m ∈ Sb} = {gy | g ∈ Pm}. □

Proof of Lemma 19. It is easy to see that η : x ↦ [id, x] is injective. Now to see that
η is surjective, let [m, x] ∈ UF(X) and consider a support {a} of x (this is a singleton
or empty since dim(X) ≤ 1). Let b = m(a) and consider the swap g = (ab). Now
[m, x] = [mg−1, gx] and note that {b} supports gx andmg−1|{b} = id|{b}. We continue
with [mg−1, gx] = [id, gx], which concludes that gx is the preimage of [m, x]. Hence η
is an isomorphism.

To see that ϵ : [m, y] ↦ my is surjective, just consider m = id. To see that ϵ is
injective, let [m, y], [m′, y′] ∈ FU(Y) be two elements such that my = m′y′. Then
by using Lemma 20 we find g, g′ ∈ Pm such that gy = my = m′y′ = g′y′. This
means that y and y′ are in the same orbit (of U(Y)) and have the same dimension.
Case 1: supp(y) = supp(y′) = ∅, then [m, y] = [id, y] = [id, y′] = [m′, y′]. Case 2:
supp(y) = {a} and supp(y′) = {b}, then supp(gy) = {g(a)} (Lemma 5). In particular
we now now that m and g map a to c = g(a), likewise m′ and g′ map b to c. Now
[m, y] = [m, g−1g′y′] = [mg−1g′, y′] = [m′, y′], where we used mg−1g(b) = c = m′(b)
in the last step. This means that ϵ is injective and hence an isomorphism. □

By Lemma 19, wemay consider the set 𝔸 as both Sb-set and Pm-set (abusing notation).
And we get an isomorphism F(𝔸) ≅ 𝔸 of nominal Sb-sets. To appreciate the above
results, we give a concrete characterisation of one-dimensional nominal sets:

Lemma 21. Let X be a nominalM-set, forM ∈ {Sb,Pm}. Then dim(X) ≤ 1 iff there
exist (discrete) sets Y and I such that X ≅ Y +∐I 𝔸.

In particular, the one-dimensional objects include the alphabets used for data words,
consisting of a product S ×𝔸 of a discrete set S of action labels and the set of atoms.
These alphabets are very common in the study of register automata (see, e.g., Isberner,
et al., 2014).

By the above and Theorem 17, Fmaps separated powers of 𝔸 to powers, and the
set of separated words over 𝔸 to the Sb-set of words over 𝔸.

Corollary 22. We have F(𝔸(n)) ≅ 𝔸n and F(𝔸(∗)) ≅ 𝔸∗.

142 Chapter 7

2.2 On exponents

We have described how F andU interact with (separated) products. In this section, we
establish a relationship between the magic wand (−−∗) and the exponent of nominal
Sb-sets (→Sb

fs).

Definition 23. Let X ∈ Pm-Nom and Y ∈ Sb-Nom. We define a Pm-equivariant map
ϕ as follows:

ϕ : (X −−∗ U(Y)) → U(F(X) →Sb
fs Y)

is defined by using the composition

F(X −−∗ U(Y)) × F(X)⟶p
−1
F((X −−∗ U(Y)) ∗ X)⟶F(ev) FU(Y)⟶ϵ Y,

where p−1 is from Theorem 17 and ev is the evaluation map of the exponent −−∗. By
Currying and the adjunction we arrive at ϕ:

F(X −−∗ U(Y)) × F(X) → Y
F(X −−∗ U(Y)) → (F(X) →Sb

fs Y)
ϕ : (X −−∗ U(Y)) → U(F(X) →Sb

fs Y)

by Currying
by Theorem 16

With thismapwe can prove a generalisation of Theorem 16. In particular, the following
theorem generalises the one-to-one correspondence between maps X → U(Y) and
maps F(X) → Y. First, it shows that this correspondence is Pm-equivariant. Second, it
extends the correspondence to all finitely supported maps and not just the equivariant
ones.

Theorem 24. The sets X −−∗ U(Y) and U(F(X) →Sb
fs Y) are naturally isomorphic via ϕ

as nominal Pm-sets.

Proof. We define some additional maps in order to construct the inverse of ϕ. First,
from Theorem 16 we get the following isomorphism:

q : U(X × Y)⟶= U(X) × U(Y)

Second, with this map and Currying, we obtain the following two natural maps:

U(F(X) →Sb
fs Y) × UF(X)⟶

q−1
U((F(X) →Sb

fs Y) × F(X)) ⟶
U(ev) U(Y)

α : U(F(X) →Sb
fs Y) → (UF(X) →Pm

fs U(Y))
by Currying

(UF(X) →Pm
fs U(Y)) × X⟶id×η (UF(X) →Pm

fs U(Y)) × UF(X)⟶ev U(Y)
β : (UF(X) →Pm

fs U(Y)) → (X →Pm
fs U(Y))

by Currying

Separation and Renaming in Nominal Sets 143

Last, we note that the inclusion A ∗ B ⊆ A × B induces a restriction map r : (B →Pm
fs

C) → (B −−∗ C) (again by Currying). A calculation shows that r ∘ β ∘ α is the inverse
of ϕ. □

Note that this theorem gives an alternative characterisation of themagic wand in terms
of the exponent in Sb-Nom, if the codomain is U(Y). Moreover, for a 1-dimensional
object X in Sb-Nom, we obtain the following special case of the theorem (using the
co-unit isomorphism from Lemma 19):

Corollary 25. Let X, Y be nominal Sb-sets. For 1-dimensional X, the nominal Pm-set
U(X) −−∗ U(Y) is naturally isomorphic to U(X →Sb

fs Y).

Remark 26. The set 𝔸 −−∗ U(X) coincides with the atom abstraction [𝔸]UX (Re-
mark 10). Hence, as a special case of Corollary 25, we recover Theorem 34 of Gabbay
and Hofmann (2008), which states a bijective correspondence between [𝔸]UX and
U(𝔸 →Sb

fs X).

3 Nominal and separated automata
In this section, we study nominal automata, which recognise languages over infinite
alphabets. After recalling the basic definitions, we introduce a newvariant of automata
based on the separating product, which we call separated nominal automata. These
automata represent nominal languages which are Sb-equivariant, essentially meaning
they are closed under substitution. Our main result is that, if a ‘classical’ nominal
automaton (over Pm) represents a language Lwhich is Sb-equivariant, then L can also
be represented by a separated nominal automaton. The latter can be exponentially
smaller (in number of orbits) than the original automaton, as we show in a concrete
example.

Remark 27. We will work with a general output set O instead of just acceptance.
The reason for this is that Sb-equivariant functions L : 𝔸 → 2 are not very interesting:
they are defined purely by the length of the input. By using more general output O,
we may still capture interesting behaviour, e.g., the automaton in Example 29.

Definition 28. Let Σ,O be Pm-sets, called input/output alphabet respectively.
– A (Pm)-nominal language is an equivariant map of the form L : Σ∗ → O.
– A nominal (Moore) automaton 𝒜 = (Q, δ, o, q0) consists of a nominal set of states Q,

an equivariant transition function δ : Q × Σ → Q, an equivariant output function
o : Q → O, and an initial state q0 ∈ Q with an empty support.

– The language semantics is the map l : Q × Σ∗ → O, defined inductively by

l(x, ε) = o(x) , l(x, aw) = l(δ(x, a),w)

144 Chapter 7

for all x ∈ Q, a ∈ Σ and w ∈ Σ∗.
– For l♭ : Q → (Σ∗ →Pm

fs O) the transpose of l, we have that l♭(q0) : Σ∗ → O is equivari-
ant; this is called the language accepted by 𝒜.

Note that the language accepted by an automaton can equivalently be characterised
by considering paths through the automaton from the initial state.

If the state space Q and the alphabets Σ,O are orbit finite, this allows us to run
algorithms (reachability, minimization, etc.) on such automata, but there is no need to
assume this for now. For an automaton 𝒜 = (Q, δ, o, q0), we define the set of reachable
states as the least set R(𝒜) ⊆ Q such that q0 ∈ R(𝒜) and for all x ∈ R(𝒜) and a ∈ Σ,
δ(x, a) ∈ R(𝒜).

Example 29. Wemodel a bounded FIFO queue of size n as a nominal Moore automa-
ton, explicitly handling the data in the automaton structure.27 The input alphabet Σ
and output alphabet O are as follows:

Σ = {Put(a) | a ∈ 𝔸} ∪ {Pop}, O = 𝔸 ∪ {⊥}.

The input alphabet encodes two actions: putting a new value on the queue and
popping a value. The output is either a value (the front of the queue) or ⊥ if the
queue is empty. A queue of size n is modelled by the automaton (Q, δ, o, q0) defined
as follows.

Q = 𝔸≤n ∪ {⊥}, q0 = ϵ, o(a1…ak) =
{
a1 if k ≥ 1
⊥ otherwise

δ(a1…ak,Put(b)) =
{
a1…akb if k < n
⊥ otherwise

δ(a1…ak,Pop) =
{
a2…ak if k > 0
⊥ otherwise

δ(⊥, x) = ⊥

The automaton is depicted in Figure 7.1 for the case n = 3. The language accepted
by this automaton assigns to a word w the first element of the queue after executing
the instructions in w from left to right, and ⊥ if the input is ill-behaved, i.e., Pop is
applied to an empty queue or Put(a) to a full queue.

Definition 30. Let Σ,O be Pm-sets. A separated language is an equivariant map of the
form Σ(∗) → O. A separated automaton 𝒜 = (Q, δ, o, q0) consists of Q, o and q0 defined
as in a nominal automaton, and an equivariant transition function δ : Q ∗ Σ → Q.

The separated language semantics of such an automaton is given by the map s : Q ∗
Σ(∗) → O, defined by

s(x, ϵ) = o(x), s(x, aw) = s(δ(x, a),w)

27 We use a reactive version of the queue data structure which is slightly different from the versions of Is-
berner, et al. (2014) and Moerman, et al. (2017).

Separation and Renaming in Nominal Sets 145

ϵ
o = ⊥

a
o = a

ab
o = a

abc
o = a

⊥
o = ⊥

Put(a)
Pop

Pop

Put(b)

Pop
goes to b

Put(c)

Pop
goes to bc

Put(d)

Σ

Figure 7.1 The FIFO automaton from Example 29 with n = 3. The right-most state
consists of five orbits as we can take a, b, c distinct, all the same, or two of them equal
in three different ways. Consequently, the complete state space has ten orbits. The
output of each state is denoted in the lower part.

for all x ∈ Q, a ∈ Σ and w ∈ Σ(∗) such that x # aw and a # w.
Let s♭ : Q → (Σ(∗) −−∗ O) be the transpose of s. Then s♭(q0) : Σ(∗) → O corresponds

to a separated language, this is called the separated language accepted by 𝒜.

By definition of the separated product, the transition function is only defined on a
state x and letter a ∈ Σ if x # a. In Example 36 below, we describe the bounded FIFO
as a separated automaton, and describe its accepted language.

First, we showhow the language semantics of separated nominal automata extends
to a language over all words, provided that both the input alphabet Σ and the output
alphabet O are Sb-sets.

Definition 31. Let Σ and O be nominal Sb-sets. An Sb-equivariant function L : Σ∗ →
O is called an Sb-language.

Notice the difference between anSb-language L : Σ∗ → O and aPm-language L′ : (UΣ)∗ →
U(O). They are both functions from Σ∗ to O, but the latter is only Pm-equivariant,
while the former satisfies the stronger property of Sb-equivariance. Languages over
separated words, and Sb-languages, are connected as follows.

Theorem 32. Suppose Σ,O are both nominal Sb-sets, and suppose dim(Σ) ≤ 1. There
is a one-to-one correspondence

S : (UΣ)(∗) → UO Pm-equivariant
S : Σ∗ → O Sb-equivariant

between separated languages and Sb-nominal languages. From S to S, this is given by
application of the forgetful functor and restricting to the subset of separated words.

146 Chapter 7

For the converse direction, given w = a1…an ∈ Σ∗, let b1, …, bn ∈ Σ such that
w # bi for all i, and bi # bj for all i, j with i ≠ j. Definem ∈ Sb by

m(a) =
{
ai if a = bi for some i
a otherwise

Then S(a1a2a3⋯an) = m ⋅ S(b1b2b3⋯bn).

Proof. There is the following chain of one-to-one correspondences, from the results of
the previous section:

(UΣ)(∗) → UO
F(UΣ)(∗) → O
(FUΣ)∗ → O

Σ∗ → O

by Theorem 16
by Corollary 18
by Lemma 19

□

Thus, every separated automaton over U(Σ),U(O) gives rise to an Sb-language S,
corresponding to the language S accepted by the automaton.

Any nominal automaton 𝒜 restricts to a separated automaton, formally described
in Definition 33. It turns out that if the (Pm)-language accepted by 𝒜 is actually an
Sb-language, then the restricted automaton already represents this language, as the
extension S of the associated separated language S (Theorem 34). Hence, in such a
case, the restricted separated automaton suffices to describe the language of 𝒜.

Definition 33. Let i : Q ∗ U(Σ) → Q×U(Σ) be the natural inclusion map. A nominal
automaton 𝒜 = (Q, δ, o, q0) induces a separated automaton 𝒜∗, by setting

𝒜∗ = (Q, δ ∘ i, o, q0).

Theorem34. SupposeΣ,O are bothSb-sets, and supposedim(Σ) ≤ 1. Let L : (UΣ)∗ →
UO be the Pm-nominal language accepted by a nominal automaton 𝒜, and suppose L
is Sb-equivariant. Let S be the separated language accepted by 𝒜∗. Then L = U(S).

Proof. If follows from the one-to-one correspondence in Theorem 32: on the bottom
there are two languages (L and U(S)), while there is only the restriction of L on the
top. We conclude that L = U(S). □

As we will see in Example 36, separated automata allow us to represent Sb-languages
in a much smaller way than nominal automata. Given a nominal automaton 𝒜, a
smaller separated automaton can be obtained by computing the reachable part of the
restriction 𝒜∗. The reachable part is defined similarly (but only where δ is defined)
and denoted by R(𝒜∗) as well.

Separation and Renaming in Nominal Sets 147

Proposition 35. For any nominal automaton 𝒜, we have R(𝒜∗) ⊆ R(𝒜).

The converse inclusion of the above proposition does certainly not hold, as shown by
the following example.

Example 36. Let 𝒜 be the automaton modelling a bounded FIFO queue (for some
n), from Example 29. The Pm-nominal language L accepted by 𝒜 is Sb-equivariant: it
is closed under application of arbitrary substitutions.

The separated automaton 𝒜∗ is given simply by restricting the transition function
to Q ∗ Σ, i.e., a Put(a)-transition from a state w ∈ Q exists only if a does not occur
in w. The separated language S accepted by this new automaton is the restriction of
the nominal language of 𝒜 to separated words. By Theorem 34, we have L = U(S).
Hence, the separated automaton 𝒜∗ represents L, essentially by closing the associated
separated language S under all substitutions.

The reachable part of 𝒜∗ is given by

R𝒜∗ = 𝔸(≤n) ∪ {⊥}.

Clearly, restricting 𝒜∗ to the reachable part does not affect the accepted language.
However, while the orginal state space Q has exponentially many orbits in n, R𝒜∗ has
only n + 1 orbits! Thus, taking the reachable part of R𝒜∗ yields a separated automa-
ton which represents the FIFO language L in a much smaller way than the original
automaton.

3.1 Separated automata: coalgebraic perspective

Nominal automata and separated automata can be presented as coalgebras on the
category of Pm-nominal sets. In this section we revisit the above results from this per-
spective, and generalise from (equivariant) languages to finitely supported languages.
In particular, we retrieve the extension from separated languages to Sb-languages, by
establishing Sb-languages as a final separated automaton. The latter result follows by
instantiating awell-known technique for lifting adjunctions to categories of coalgebras,
using the results of Section 2. In the remainder of this section we assume familiarity
with the theory of coalgebras, see, e.g., Jacobs (2016) and Rutten (2000).

Definition 37. LetM be a submonoid of Sb, and let Σ,O be nominalM-sets, referred
to as the input and output alphabet respectively. Wedefine the functorBM : M-Nom →
M-Nom byBM(X) = O×(Σ →M

fs X). An (M)-nominal (Moore) automaton is aBM-coalgebra.

A BM-coalgebra can be presented as a nominal set Q together with the pairing

⟨o, δ♭⟩ : Q → O× (Σ →M
fs Q)

of an equivariant output function o : Q → O, and (the transpose of) an equivariant
transition function δ : Q × Σ → Q. In caseM = Pm, this coincides with the automata

148 Chapter 7

of Definition 28, omitting initial states. The language semantics is generalised ac-
cordingly, as follows. Given such a BM-coalgebra (Q, ⟨o, δ♭⟩), the language semantics
l : Q × Σ∗ → O is given by

l(x, ε) = o(x) , l(x, aw) = l(δ(x, a),w)

for all x ∈ S, a ∈ Σ and w ∈ Σ∗.

Theorem 38. LetM be a submonoid of Sb, let Σ, O be nominalM-sets. The nom-
inal M-set Σ∗ →M

fs O extends to a final BM-coalgebra (Σ∗ →M
fs O, ζ), such that the

unique homomorphism from a given BM-coalgebra is the transpose l♭ of the language
semantics.

A separated automaton (Definition 30, without initial states) corresponds to a coalgebra
for the functorB∗ : Pm-Nom → Pm-Nom given byB∗(X) = O×(Σ −−∗ X). The separated
language semantics arises by finality.

Theorem 39. The set Σ(∗) −−∗ O is the carrier of a final B∗-coalgebra, such that the
unique coalgebra homomorphism from a givenB∗-coalgebra (Q, ⟨o, δ⟩) is the transpose
s♭of the separated language semantics s : Q ∗ Σ(∗) → O (Definition 30).

Next, we provide an alternative final B∗-coalgebra which assigns Sb-nominal lan-
guages to states of separated nominal automata. The essence is to obtain a final
B∗-coalgebra from the final BSb-coalgebra. In order to prove this, we use a technique
to lift adjunctions to categories of coalgebras. This technique occurs regularly in the
coalgebraic study of automata (Jacobs, et al., 2015; Kerstan, et al., 2014; Klin & Rot,
2016).

Theorem 40. Let Σ be a Pm-set, and O an Sb-set. Define B∗ and BSb accordingly, as
B∗(X) = UO× (Σ −−∗ X) and BSb(X) = O × (FΣ →Sb

fs X).
There is an adjunction F ⊣ U in:

CoAlg(B∗) ⊥ CoAlg(BSb)

F

U

where F and U coincide with F and U respectively on carriers.

Proof. There is a natural isomorphism λ : B∗U → UBSb given by

λ : UO × (Σ −−∗ UX) −−→
id × ϕ

UO×U(FΣ →Sb
fs X) −→

≅
U(O × (FΣ →Sb

fs X)),

where ϕ is the isomorphism from Theorem 24 and the isomorphism on the right
comes from U being a right adjoint. The result now follows from Theorem 2.14 of
Hermida and Jacobs (1998). In particular, U(X, γ) = (UX, λ−1 ∘ U(γ)). □

Separation and Renaming in Nominal Sets 149

Since right adjoints preserve limits, and final objects in particular, we obtain the
following. This gives an Sb-semantics of separated automata through finality.

Corollary 41. Let ((FΣ)∗ →Sb
fs O, ζ) be the final BSb-coalgebra (Theorem 38). The

B∗-coalgebra U(Σ∗ →Sb
fs O, ζ) is final and carried by the set (FΣ)∗ →Sb

fs O of Sb-nominal
languages.

4 Related and future work
Fiore and Turi (2001) described a similar adjunction between certain presheaf cate-
gories. However, Staton (2007) describes in his thesis that the usage of presheaves
allows for many degenerate models and one should look at sheaves instead. The
category of sheaves is equivalent to the category of nominal sets. Staton transfers the
adjunction of Fiore and Turi to the sheaf categories. We conjecture that the adjunction
presented in this paper is equivalent, but defined in more elementary means. The
monoidal property of F, which is crucial for our application in automata, has not been
discussed before.

An interesting line of research is the generalisation to other symmetries byBojańczyk,
et al. (2014). In particular, the total order symmetry is relevant, since it allows one to
compare elements on their order, as often used in data words. In this case the sym-
metries are given by the group of all monotone bijections. Many results of nominal
sets generalise to this symmetry. For monotone substitutions, however, the situation
seems more subtle. For example, we note that a substitution which maps two values
to the same value actually maps all the values in between to that value. Whether the
adjunction from Theorem 16 generalises to other symmetries is left as future work.

This research was motivated by learning nominal automata. If we know a nominal
automaton recognises an Sb-language, then we are better off learning a separated
automaton directly. From the Sb-semantics of separated automata, it follows that we
have a Myhill-Nerode theorem, which means that learning is feasible. We expect that
this can be useful, since we can achieve an exponential reduction this way.

Bojańczyk, et al. (2014) prove that nominal automata are equivalent to register
automata in terms of expressiveness. However, when translating from register au-
tomata with n states to nominal automata, we may get exponentially many orbits.
This happens for instance in the FIFO automaton (Example 29). We have shown that
the exponential blow-up is avoidable by using separated automata, for this example
and in general for Sb-equivariant languages. An open problem is whether the latter
requirement can be relaxed, by adding separated transitions only locally in a nominal
automaton.

A possible step in this direction is to consider the monad T = UF on Pm-Nom
and incorporate it in the automaton model. We believe that this is the hypothesised
“substitution monad” from Chapter 5. The monad is monoidal (sending separated
products to Cartesian products) and if X is an orbit-finite nominal set, then so is T(X).

150 Chapter 7

This means that we can consider nominal T-automata and we can perhaps determinise
them using coalgebraic methods (Silva, et al., 2013).

Acknowledgements
We would like to thank Gerco van Heerdt for his useful comments.

Bibliography

Aarts, F. D. (2014). Tomte: bridging the gap between active learning and real-world systems. (PhD
thesis). Radboud University, Nijmegen, The Netherlands. Retrieved from http://hdl
.handle.net/2066/130428 (5 and 42)

Aarts, F., de Ruiter, J., & Poll, E. (2013). Formal Models of Bank Cards for Free. In ICST,
Workshops Proceedings. IEEE Computer Society. doi:10.1109/ICSTW.2013.60 (4)

Aarts, F., Fiterău-Broștean, P., Kuppens, H., & Vaandrager, F. W. (2015). Learning Register
Automata with Fresh Value Generation. In Theoretical Aspects of Computing - ICTAC -
12th International Colloquium Proceedings. Springer. doi:10.1007/978-3-319-25150-9_11

(76, 103–104, 106, and 110)

Aarts, F., Jonsson, B., Uijen, J., & Vaandrager, F. W. (2015). Generating models of infinite-state
communication protocols using regular inference with abstraction. Formal Methods in
System Design, 46(1), 1–41. doi:10.1007/s10703-014-0216-x (43 and 48)

Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F. W., & Verwer, S. (2014). Improving active
Mealy machine learning for protocol conformance testing. Machine Learning, 96(1-2),
189–224. doi:10.1007/s10994-013-5405-0 (42)

Aarts, F. & Vaandrager, F. W. (2010). Learning I/O Automata. In CONCUR - Concurrency
Theory, 21th International Conference Proceedings. Springer. doi:10.1007/978-3-642-15375
-4_6 (76)

Angluin, D. (1987). Learning Regular Sets from Queries and Counterexamples. Inf. Comput.,
75(2), 87–106. doi:10.1016/0890-5401(87)90052-6

(2, 11, 37, 42, 76, 78, 88, and 124–125)

Atiyah, M. F. & MacDonald, I. G. (1969). Introduction to commutative algebra. Addison-Wesley-
Longman. (137)

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Explor-
ing and Manipulating Networks. In Proceedings of the Third International Conference on
Weblogs and Social Media, ICWSM. The AAAI Press. Retrieved from http://aaai.org/ocs
/index.php/ICWSM/09/paper/view/154 (55)

Behrmann, G., David, A., Larsen, K. G., Håkansson, J., Pettersson, P., Yi, W., & Hendriks, M.
(2006). UPPAAL 4.0. In Third International Conference on the Quantitative Evaluation of
Systems (QEST). IEEE Computer Society. doi:10.1109/QEST.2006.59 (52)

http://hdl.handle.net/2066/130428
http://hdl.handle.net/2066/130428
http://dx.doi.org/10.1109/ICSTW.2013.60
http://dx.doi.org/10.1007/978-3-319-25150-9_11
http://dx.doi.org/10.1007/s10703-014-0216-x
http://dx.doi.org/10.1007/s10994-013-5405-0
http://dx.doi.org/10.1007/978-3-642-15375-4_6
http://dx.doi.org/10.1007/978-3-642-15375-4_6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://dx.doi.org/10.1109/QEST.2006.59

152

Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., & Steffen, B. (2005). On the Cor-
respondence Between Conformance Testing and Regular Inference. In FASE, ETAPS,
Proceedings. Springer. doi:10.1007/978-3-540-31984-9_14 (37, 42, and 44)

Berg, T., Jonsson, B., & Raffelt, H. (2006). Regular Inference for State Machines with Parame-
ters. In FASE, ETAPS, Proceedings. Springer. doi:10.1007/11693017_10 (106)

(2008). Regular Inference for State Machines Using Domains with Equality Tests. In
FASE, ETAPS, Proceedings. Springer. doi:10.1007/978-3-540-78743-3_24 (106)

Bernhard, P. J. (1994). A Reduced Test Suite for Protocol Conformance Testing. ACM Trans.
Softw. Eng. Methodol., 3(3), 201–220. doi:10.1145/196092.196088 (26)

Bojańczyk, M. (2018). Slightly Infinite Sets. Draft December 4, 2018. Retrieved from https:/
/www.mimuw.edu.pl/~bojan/upload/main-6.pdf (9 and 132)

Bojańczyk, M., Braud, L., Klin, B., & Lasota, S. (2012). Towards nominal computation. In
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL. ACM. doi:10.1145/2103656.2103704 (101 and 127)

Bojańczyk, M., Klin, B., & Lasota, S. (2014). Automata theory in nominal sets. Logical Methods
in Computer Science, 10(3). doi:10.2168/LMCS-10(3:4)2014

(9, 76, 81–82, 84, 86–87, 104, 108, 110–113, 120, 127, 132, 135, and 149)

Bojańczyk, M., Klin, B., Lasota, S., & Toruńczyk, S. (2013). Turing Machines with Atoms. In
28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS. Author. doi:10
.1109/LICS.2013.24 (132)

Bojańczyk, M. & Lasota, S. (2012). A Machine-Independent Characterization of Timed Lan-
guages. InAutomata, Languages, and Programming - 39th International Colloquium, ICALP,
Proceedings, Part II. Springer. doi:10.1007/978-3-642-31585-5_12 (76, 111, and 128)

Bollig, B., Habermehl, P., Kern, C., & Leucker, M. (2008). Angluin-Style Learning of NFA.
Retrieved from http://www.lsv.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2008-28.pdf
(Research Report LSV-08-28, LSV, ENS Cachan) (99)

(2009). Angluin-Style Learning of NFA. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI. Author. Retrieved from http://ijcai.org
/Proceedings/09/Papers/170.pdf (83, 93–95, 98–99, and 105)

Bollig, B., Habermehl, P., Leucker, M., & Monmege, B. (2013). A Fresh Approach to Learning
Register Automata. In Developments in Language Theory - 17th International Conference,
DLT, Proceedings. Springer. doi:10.1007/978-3-642-38771-5_12

(5, 76, 103, 106, and 110)

Bonchi, F. & Pous, D. (2013). CheckingNFA equivalence with bisimulations up to congruence.
In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL. ACM. doi:10.1145/2429069.2429124 (60)

(2015). Hacking nondeterminism with induction and coinduction. Commun. ACM,
58(2), 87–95. doi:10.1145/2713167 (36 and 103)

http://dx.doi.org/10.1007/978-3-540-31984-9_14
http://dx.doi.org/10.1007/11693017_10
http://dx.doi.org/10.1007/978-3-540-78743-3_24
http://dx.doi.org/10.1145/196092.196088
https://www.mimuw.edu.pl/~bojan/upload/main-6.pdf
https://www.mimuw.edu.pl/~bojan/upload/main-6.pdf
http://dx.doi.org/10.1145/2103656.2103704
http://dx.doi.org/10.2168/LMCS-10(3:4)2014
http://dx.doi.org/10.1109/LICS.2013.24
http://dx.doi.org/10.1109/LICS.2013.24
http://dx.doi.org/10.1007/978-3-642-31585-5_12
http://www.lsv.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2008-28.pdf
http://ijcai.org/Proceedings/09/Papers/170.pdf
http://ijcai.org/Proceedings/09/Papers/170.pdf
http://dx.doi.org/10.1007/978-3-642-38771-5_12
http://dx.doi.org/10.1145/2429069.2429124
http://dx.doi.org/10.1145/2713167

153

Botincan, M. & Babic, D. (2013). Sigma*: symbolic learning of input-output specifications.
In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL. ACM. doi:10.1145/2429069.2429123 (106)

Cameron, P. J., Solomon, R., & Turull, A. (1989). Chains of subgroups in symmetric groups.
Journal of algebra, 127(2), 340–352. doi:10.1016/0021-8693(89)90256-1 (92)

Cassel, S. (2015). Learning Component Behavior from Tests: Theory and Algorithms for Automata
with Data. (PhD thesis). Uppsala University, Sweden. Retrieved from http://urn.kb.se
/resolve?urn=urn:nbn:se:uu:diva-265369 (5)

Cassel, S., Howar, F., Jonsson, B., Merten, M., & Steffen, B. (2015). A succinct canonical register
automaton model. J. Log. Algebr. Meth. Program., 84(1), 54–66. doi:10.1016/j.jlamp.2014
.07.004 (42)

Cassel, S., Howar, F., Jonsson, B., & Steffen, B. (2016). Active learning for extended finite state
machines. Formal Asp. Comput., 28(2), 233–263. doi:10.1007/s00165-016-0355-5

(76, 106, and 110)

Chalupar, G., Peherstorfer, S., Poll, E., & de Ruiter, J. (2014). Automated Reverse Engineer-
ing using Lego®. In 8th USENIX Workshop on Offensive Technologies, WOOT. USENIX
Association. Retrieved from https://www.usenix.org/conference/woot14/workshop
-program/presentation/chalupar (4)

Chan, W. Y. L., Vuong, S. T., & Ito, M. R. (1989). An Improved Protocol Test Generation Proce-
dure Based on UIOs. In Proceedings of the ACM Symposium on Communications Architec-
tures & Protocols, SIGCOMM. ACM. doi:10.1145/75246.75274 (26 and 28)

Cho, C. Y., Babic, D., Shin, E. C. R., & Song, D. (2010). Inference and analysis of formal models
of botnet command and control protocols. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS. ACM. doi:10.1145/1866307.1866355

(42)

Chow, T. S. (1978). Testing Software Design Modeled by Finite-State Machines. IEEE Trans.
Software Eng., 4(3), 178–187. doi:10.1109/TSE.1978.231496 (6, 26, 37, 43, and 49)

Ciancia, V., Kurz, A., & Montanari, U. (2010). Families of Symmetries as Efficient Models of
Resource Binding. Electr. Notes Theor. Comput. Sci., 264(2), 63–81. doi:10.1016/j.entcs
.2010.07.014 (127)

Ciancia, V. & Montanari, U. (2010). Symmetries, local names and dynamic (de)-allocation of
names. Inf. Comput., 208(12), 1349–1367. doi:10.1016/j.ic.2009.10.007 (107 and 127)

Clouston, R. (2013). GeneralisedNameAbstraction forNominal Sets. In Foundations of Software
Science and Computation Structures - 16th International Conference, FOSSACS, Proceedings.
Author. doi:10.1007/978-3-642-37075-5_28 (136)

D’Antoni, L. & Veanes, M. (2014). Minimization of symbolic automata. In The 41st An-
nual ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL.
ACM. doi:10.1145/2535838.2535849 (76)

http://dx.doi.org/10.1145/2429069.2429123
http://dx.doi.org/10.1016/0021-8693(89)90256-1
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265369
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265369
http://dx.doi.org/10.1016/j.jlamp.2014.07.004
http://dx.doi.org/10.1016/j.jlamp.2014.07.004
http://dx.doi.org/10.1007/s00165-016-0355-5
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar
http://dx.doi.org/10.1145/75246.75274
http://dx.doi.org/10.1145/1866307.1866355
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1016/j.entcs.2010.07.014
http://dx.doi.org/10.1016/j.entcs.2010.07.014
http://dx.doi.org/10.1016/j.ic.2009.10.007
http://dx.doi.org/10.1007/978-3-642-37075-5_28
http://dx.doi.org/10.1145/2535838.2535849

154

(2017). The Power of Symbolic Automata and Transducers. In Computer Aided Verifi-
cation - 29th International Conference, CAV Proceedings, Part I. Springer. doi:10.1007/978
-3-319-63387-9_3 (110 and 128)

David, A., Möller, M. O., & Yi, W. (2002). Formal Verification of UML Statecharts with Real-
Time Extensions. In FASE, ETAPS, Proceedings. Springer. doi:10.1007/3-540-45923-5_15

(52)

Demri, S. & Lazic, R. (2009). LTLwith the freeze quantifier and register automata. ACMTrans.
Comput. Log., 10(3), 16:1–16:30. doi:10.1145/1507244.1507246 (81)

Denis, F., Lemay, A., & Terlutte, A. (2002). Residual Finite State Automata. Fundam. Inform.,
51(4), 339–368. Retrieved from http://content.iospress.com/articles/fundamenta
-informaticae/fi51-4-02 (93)

Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A. R., & Yevtushenko, N. (2010). FSM-based
conformance testing methods: A survey annotated with experimental evaluation. In-
formation & Software Technology, 52(12), 1286–1297. doi:10.1016/j.infsof.2010.07.001

(21, 31, 35, 39, 60, and 70–72)

Dorofeeva, R., El-Fakih, K., & Yevtushenko, N. (2005). An Improved Conformance Testing
Method. In Formal Techniques for Networked and Distributed Systems - FORTE, 25th IFIP
WG 6.1 International Conference, Proceedings. Springer. doi:10.1007/11562436_16 (38)

Drews, S. &D’Antoni, L. (2017). Learning Symbolic Automata. In TACAS, ETAPS, Proceedings,
Part I. Author. doi:10.1007/978-3-662-54577-5_10 (110)

de la Higuera, C. (2010). Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press. doi:10.1017/CBO9781139194655 (42)

de Moura, L. M. & Bjørner, N. (2008). Z3: An Efficient SMT Solver. In TACAS, ETAPS, Pro-
ceedings. Springer. doi:10.1007/978-3-540-78800-3_24 (103)

de Ruiter, J. & Poll, E. (2015). Protocol State Fuzzing of TLS Implementations. In 24th USENIX
Security Symposium, USENIX Security. USENIX Association. Retrieved from https:/
/www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

(4)

Emerson, E. A. & Sistla, A. P. (1996). Symmetry andModel Checking. FormalMethods in System
Design, 9(1/2), 105–131. doi:10.1007/BF00625970 (9)

Endo, A. T. & Simão, A. (2013). Evaluating test suite characteristics, cost, and effectiveness of
FSM-based testing methods. Information & Software Technology, 55(6), 1045–1062. doi
:10.1016/j.infsof.2013.01.001 (39)

Eshuis, R., Jansen, D. N., & Wieringa, R. (2002). Requirements-Level Semantics and Model
Checking of Object-Oriented Statecharts. Requir. Eng., 7(4), 243–263. doi:10.1007
/s007660200019 (46)

http://dx.doi.org/10.1007/978-3-319-63387-9_3
http://dx.doi.org/10.1007/978-3-319-63387-9_3
http://dx.doi.org/10.1007/3-540-45923-5_15
http://dx.doi.org/10.1145/1507244.1507246
http://content.iospress.com/articles/fundamenta-informaticae/fi51-4-02
http://content.iospress.com/articles/fundamenta-informaticae/fi51-4-02
http://dx.doi.org/10.1016/j.infsof.2010.07.001
http://dx.doi.org/10.1007/11562436_16
http://dx.doi.org/10.1007/978-3-662-54577-5_10
http://dx.doi.org/10.1017/CBO9781139194655
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
http://dx.doi.org/10.1007/BF00625970
http://dx.doi.org/10.1016/j.infsof.2013.01.001
http://dx.doi.org/10.1016/j.infsof.2013.01.001
http://dx.doi.org/10.1007/s007660200019
http://dx.doi.org/10.1007/s007660200019

155

Ferrari, G. L., Montanari, U., & Tuosto, E. (2005). Coalgebraic minimization of HD-automata
for the π-calculus using polymorphic types. Theor. Comput. Sci., 331(2-3), 325–365.
doi:10.1016/j.tcs.2004.09.021 (9 and 127)

Fiore, M. P. & Turi, D. (2001). Semantics of Name and Value Passing. In 16th Annual IEEE
Symposium on Logic in Computer Science, Proceedings. IEEE Computer Society. doi:10
.1109/LICS.2001.932486 (149)

Fiterău-Broștean, P. (2018). Active Model Learning for the Analysis of Network Protocols. (PhD
thesis). Radboud University, Nijmegen, The Netherlands. Retrieved from http://hdl
.handle.net/2066/187331 (5 and 14)

Fiterău-Broștean, P. & Howar, F. (2017). Learning-Based Testing the SlidingWindow Behavior
of TCP Implementations. In Critical Systems: Formal Methods and Automated Verification,
Joint FMICS-AVoCS, Proceedings. Springer. doi:10.1007/978-3-319-67113-0_12 (4)

Fiterău-Broștean, P., Janssen, R., & Vaandrager, F. W. (2014). Learning Fragments of the TCP
Network Protocol. In Formal Methods for Industrial Critical Systems - 19th International
Conference, FMICS, Proceedings. Springer. doi:10.1007/978-3-319-10702-8_6 (42)

(2016). Combining Model Learning and Model Checking to Analyze TCP Implemen-
tations. In Computer Aided Verification - 28th International Conference, CAV, Proceedings,
Part II. Springer. doi:10.1007/978-3-319-41540-6_25 (4 and 110)

Fiterău-Broștean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F. W., & Verleg, P. (2017).
Model learning andmodel checking of SSH implementations. In Proceedings of the 24th
ACM SIGSOFT International SPIN Symposium. ACM. doi:10.1145/3092282.3092289

(4)

Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., & Ghedamsi, A. (1991). Test Selec-
tion Based on Finite State Models. IEEE Trans. Software Eng., 17(6), 591–603. doi:10
.1109/32.87284 (27, 43, and 50)

Gabbay, M. J. (2007). Nominal Renaming Sets. (Technical report). Author. Retrieved fromhttps
://www.gabbay.org/paper.html#nomrs-tr (Heriot-Watt University) (132 and 135)

Gabbay, M. J. & Hofmann, M. (2008). Nominal Renaming Sets. In Logic for Programming, Arti-
ficial Intelligence, and Reasoning, 15th International Conference, LPAR, Proceedings. Author.
doi:10.1007/978-3-540-89439-1_11 (132–136 and 143)

Gabbay, M. & Pitts, A. M. (1999). A New Approach to Abstract Syntax Involving Binders. In
14th Annual IEEE Symposium on Logic in Computer Science. Author. doi:10.1109/LICS
.1999.782617 (132)

(2002). A New Approach to Abstract Syntax with Variable Binding. Formal Asp. Com-
put., 13(3-5), 341–363. doi:10.1007/s001650200016 (9 and 110)

Garavel, H., Lang, F., Mateescu, R., & Serwe, W. (2011). CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In TACAS, ETAPS, Proceedings.
Springer. doi:10.1007/978-3-642-19835-9_33 (52 and 55)

http://dx.doi.org/10.1016/j.tcs.2004.09.021
http://dx.doi.org/10.1109/LICS.2001.932486
http://dx.doi.org/10.1109/LICS.2001.932486
http://hdl.handle.net/2066/187331
http://hdl.handle.net/2066/187331
http://dx.doi.org/10.1007/978-3-319-67113-0_12
http://dx.doi.org/10.1007/978-3-319-10702-8_6
http://dx.doi.org/10.1007/978-3-319-41540-6_25
http://dx.doi.org/10.1145/3092282.3092289
http://dx.doi.org/10.1109/32.87284
http://dx.doi.org/10.1109/32.87284
https://www.gabbay.org/paper.html#nomrs-tr
https://www.gabbay.org/paper.html#nomrs-tr
http://dx.doi.org/10.1007/978-3-540-89439-1_11
http://dx.doi.org/10.1109/LICS.1999.782617
http://dx.doi.org/10.1109/LICS.1999.782617
http://dx.doi.org/10.1007/s001650200016
http://dx.doi.org/10.1007/978-3-642-19835-9_33

156

Gill, A. (1962). Introduction to the theory of finite-state machines. McGraw-Hill. (60)

Graaf, B. & vanDeursen, A. (2007). Model-Driven Consistency Checking of Behavioural Spec-
ifications. In Model-based Methodologies for Pervasive and Embedded Software, 4th Interna-
tional Workshop, MOMPES, Proceedings. IEEE Computer Society. doi:10.1109/MOMPES
.2007.12 (43)

Gries, D. (1973). Describing an Algorithm by Hopcroft. Acta Inf., 2, 97–109. (61–62)

Grigore, R. & Tzevelekos, N. (2016). History-Register Automata. Logical Methods in Computer
Science, 12(1). doi:10.2168/LMCS-12(1:7)2016 (110 and 128)

Groz, R., Bremond, N., & Simão, A. (2018). Inferring FSM Models of Systems Without Re-
set. In International Conference on Grammatical Inference, ICGI. Proceedings of Machine
Learning Research. (To appear) (39)

Groz, R., Li, K., Petrenko, A., & Shahbaz, M. (2008). Modular SystemVerification by Inference,
Testing and Reachability Analysis. In TestCom/FATES, Proceedings. Springer. doi:10
.1007/978-3-540-68524-1_16 (42)

Hansen, H. H., Ketema, J., Luttik, B., Mousavi, M. R., van de Pol, J., & dos Santos, O. M. (2010).
Automated Verification of Executable UML Models. In Formal Methods for Components
and Objects - 9th International Symposium, FMCO, Revised Papers. Springer. doi:10.1007
/978-3-642-25271-6_12 (52)

Hermida, C. & Jacobs, B. (1998). Structural Induction andCoinduction in a Fibrational Setting.
Inf. Comput., 145(2), 107–152. doi:10.1006/inco.1998.2725 (148)

Hierons, R. M. & Türker, U. C. (2015). Incomplete Distinguishing Sequences for Finite State
Machines. Comput. J., 58(11), 3089–3113. doi:10.1093/comjnl/bxv041 (39 and 71)

Hopcroft, J. E. (1971). An n logn algorithm for minimizing states in a finite automaton. In
Theory of Machines and Computations - Proceedings of an International Symposium on the
Theory of Machines and Computations. Academic Press. doi:10.1016/B978-0-12-417750-5
.50022-1 (11, 60, 66, and 71)

Howar, F., Steffen, B., Jonsson, B., & Cassel, S. (2012). Inferring Canonical Register Automata.
In Verification, Model Checking, and Abstract Interpretation - 13th International Conference,
VMCAI, Proceedings. Springer. doi:10.1007/978-3-642-27940-9_17

(5, 42, 81, and 106)

Howar, F., Steffen, B., & Merten, M. (2011). Automata Learning with Automated Alphabet
Abstraction Refinement. InVerification, Model Checking, and Abstract Interpretation - 12th
International Conference, VMCAI, Proceedings. Springer. doi:10.1007/978-3-642-18275-4
_19 (43 and 106)

Hungar, H., Niese, O., & Steffen, B. (2003). Domain-Specific Optimization in Automata
Learning. In Computer Aided Verification, 15th International Conference, CAV, Proceedings.
Springer. doi:10.1007/978-3-540-45069-6_31 (4 and 42)

http://dx.doi.org/10.1109/MOMPES.2007.12
http://dx.doi.org/10.1109/MOMPES.2007.12
http://dx.doi.org/10.2168/LMCS-12(1:7)2016
http://dx.doi.org/10.1007/978-3-540-68524-1_16
http://dx.doi.org/10.1007/978-3-540-68524-1_16
http://dx.doi.org/10.1007/978-3-642-25271-6_12
http://dx.doi.org/10.1007/978-3-642-25271-6_12
http://dx.doi.org/10.1006/inco.1998.2725
http://dx.doi.org/10.1093/comjnl/bxv041
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1
http://dx.doi.org/10.1007/978-3-642-27940-9_17
http://dx.doi.org/10.1007/978-3-642-18275-4_19
http://dx.doi.org/10.1007/978-3-642-18275-4_19
http://dx.doi.org/10.1007/978-3-540-45069-6_31

157

Ip, C. N. & Dill, D. L. (1996). Better Verification Through Symmetry. Formal Methods in System
Design, 9(1/2), 41–75. doi:10.1007/BF00625968 (9)

Isberner, M. (2015, October). Foundations of Active Automata Learning: An Algorithmic Perspec-
tive. (PhD thesis). Technical University of Dortmund, Germany. Retrieved from https
://eldorado.tu-dortmund.de/bitstream/2003/34282/1/Dissertation.pdf (13 and 76)

Isberner, M., Howar, F., & Steffen, B. (2013). Inferring Automata with State-Local Alphabet
Abstractions. In NASA Formal Methods, 5th International Symposium, NFM, Proceedings.
Springer. doi:10.1007/978-3-642-38088-4_9 (106)

(2014). Learning register automata: from languages to program structures. Machine
Learning, 96(1-2), 65–98. doi:10.1007/s10994-013-5419-7 (104, 141, and 144)

Jacobs, B. (2016). Introduction to Coalgebra: Towards Mathematics of States and Observation. (Vol.
59). Cambridge University Press. doi:10.1017/CBO9781316823187 (147)

Jacobs, B. & Silva, A. (2014). Automata Learning: A Categorical Perspective. In Horizons of
the Mind. A Tribute to Prakash Panangaden - Essays dedicated to Prakash Panangaden on the
occasion of his 60th birthday. Springer. doi:10.1007/978-3-319-06880-0_20 (87–88)

Jacobs, B., Silva, A., & Sokolova, A. (2015). Trace semantics via determinization. J. Comput.
Syst. Sci., 81(5), 859–879. doi:10.1016/j.jcss.2014.12.005 (148)

Kaminski, M. & Francez, N. (1994). Finite-Memory Automata. Theor. Comput. Sci., 134(2),
329–363. doi:10.1016/0304-3975(94)90242-9 (81 and 110)

Kearns, M. J. & Vazirani, U. V. (1994). An Introduction to Computational Learning Theory. MIT
Press. Retrieved from https://mitpress.mit.edu/books/introduction-computational
-learning-theory (3)

Kerstan, H., König, B., &Westerbaan, B. (2014). Lifting Adjunctions to Coalgebras to (Re)Dis-
cover Automata Constructions. In CMCS, ETAPS, Revised Selected Papers. Author. doi
:10.1007/978-3-662-44124-4_10 (148)

Klin, B. & Rot, J. (2016). Coalgebraic trace semantics via forgetful logics. Logical Methods in
Computer Science, 12(4). doi:10.2168/LMCS-12(4:10)2016 (148)

Klin, B. & Szynwelski, M. (2016). SMTSolving for Functional Programming over Infinite Struc-
tures. In MSFP, ETAPS. Author. doi:10.4204/EPTCS.207.3

(77, 88, 101, 103, 110, 124, and 126–127)

Knuutila, T. (2001). Re-describing an algorithm by Hopcroft. Theor. Comput. Sci., 250(1-2),
333–363. doi:10.1016/S0304-3975(99)00150-4 (67)

Kopczyński, E. (n.d.). Nominal LStar in LOIS. Retrieved from https://github.com/eryxcc/lois
/blob/master/tests/learning.cpp (Source code) (125)

http://dx.doi.org/10.1007/BF00625968
https://eldorado.tu-dortmund.de/bitstream/2003/34282/1/Dissertation.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/34282/1/Dissertation.pdf
http://dx.doi.org/10.1007/978-3-642-38088-4_9
http://dx.doi.org/10.1007/s10994-013-5419-7
http://dx.doi.org/10.1017/CBO9781316823187
http://dx.doi.org/10.1007/978-3-319-06880-0_20
http://dx.doi.org/10.1016/j.jcss.2014.12.005
http://dx.doi.org/10.1016/0304-3975(94)90242-9
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
http://dx.doi.org/10.1007/978-3-662-44124-4_10
http://dx.doi.org/10.1007/978-3-662-44124-4_10
http://dx.doi.org/10.2168/LMCS-12(4:10)2016
http://dx.doi.org/10.4204/EPTCS.207.3
http://dx.doi.org/10.1016/S0304-3975(99)00150-4
https://github.com/eryxcc/lois/blob/master/tests/learning.cpp
https://github.com/eryxcc/lois/blob/master/tests/learning.cpp

158

Kopczyński, E. & Toruńczyk, S. (2016). LOIS: an Application of SMT Solvers. In Proceedings
of the 14th International Workshop on Satisfiability Modulo Theories, SMT, IJCAR. CEUR-
WS.org. Retrieved from http://ceur-ws.org/Vol-1617/paper5.pdf

(107–108, 110, 124, and 126)

(2017). LOIS: syntax and semantics. In Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL. ACM. Retrieved fromhttp://dl.acm
.org/citation.cfm?id=3009876 (107–108, 110, and 124)

Kozen, D., Mamouras, K., Petrișan, D., & Silva, A. (2015). Nominal Kleene Coalgebra. In Au-
tomata, Languages, and Programming - 42nd International Colloquium, ICALP, Proceedings,
Part II. Springer. doi:10.1007/978-3-662-47666-6_23 (107)

Krenn,W., Schlick, R., &Aichernig, B. K. (2009). MappingUML to Labeled Transition Systems
for Test-CaseGeneration - A Translation viaObject-OrientedAction Systems. In Formal
Methods for Components andObjects - 8th International Symposium, FMCO, Revised Selected
Papers. Springer. doi:10.1007/978-3-642-17071-3_10 (52)

Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., … Terrier, F. (2009).
Papyrus UML: an open source toolset for MDA. In Proceedings of the Fifth European Con-
ference on Model-Driven Architecture Foundations and Applications, ECMDA-FA. CTIT.

(53)

Lee, D. & Yannakakis, M. (1994). Testing Finite-State Machines: State Identification and Veri-
fication. IEEE Trans. Computers, 43(3), 306–320. doi:10.1109/12.272431

(6, 23, 28, 31–34, 39, 43, 50, 56, and 62)

Leucker, M. (2006). LearningMeets Verification. In Formal Methods for Components and Objects,
5th International Symposium, FMCO, Revised Lectures. Springer. doi:10.1007/978-3-540
-74792-5_6 (42)

Li, K., Groz, R., & Shahbaz, M. (2006). Integration Testing of Distributed Components Based
on Learning Parameterized I/O Models. In Formal Techniques for Networked and Distrib-
uted Systems - FORTE, 26th IFIP WG 6.1 International Conference. Springer. doi:10.1007
/11888116_31 (42)

Luo, G., Petrenko, A., & v. Bochmann, G. (1995). Selecting test sequences for partially-specified
nondeterministic finite state machines. doi:10.1007/978-0-387-34883-4_6 (27)

Maler, O. & Mens, I. E. (2017). A Generic Algorithm for Learning Symbolic Automata from
Membership Queries. In Models, Algorithms, Logics and Tools - Essays dedicated to Kim
Guldstrand Larsen on the occasion of his 60th birthday. Springer. doi:10.1007/978-3-319
-63121-9_8 (128)

Maler, O. & Pnueli, A. (1995). On the Learnability of Infinitary Regular Sets. Inf. Comput.,
118(2), 316–326. doi:10.1006/inco.1995.1070 (90)

Mens, I. E. (2017). Learning regular languages over large alphabets. (PhD thesis). Grenoble Alpes
University, France. Retrieved from https://tel.archives-ouvertes.fr/tel-01792635

(106)

http://ceur-ws.org/Vol-1617/paper5.pdf
http://dl.acm.org/citation.cfm?id=3009876
http://dl.acm.org/citation.cfm?id=3009876
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-642-17071-3_10
http://dx.doi.org/10.1109/12.272431
http://dx.doi.org/10.1007/978-3-540-74792-5_6
http://dx.doi.org/10.1007/978-3-540-74792-5_6
http://dx.doi.org/10.1007/11888116_31
http://dx.doi.org/10.1007/11888116_31
http://dx.doi.org/10.1007/978-0-387-34883-4_6
http://dx.doi.org/10.1007/978-3-319-63121-9_8
http://dx.doi.org/10.1007/978-3-319-63121-9_8
http://dx.doi.org/10.1006/inco.1995.1070
https://tel.archives-ouvertes.fr/tel-01792635

159

Merten, M., Howar, F., Steffen, B., Cassel, S., & Jonsson, B. (2012). Demonstrating Learning of
Register Automata. In TACAS, ETAPS, Proceedings. Springer. doi:10.1007/978-3-642
-28756-5_32 (42)

Merten, M., Steffen, B., Howar, F., &Margaria, T. (2011). Next Generation LearnLib. In TACAS,
ETAPS, Proceedings. Springer. doi:10.1007/978-3-642-19835-9_18 (47)

Moerman, J. (2019). Learning Product Automata. In International Conference on Grammatical
Inference, ICGI, Proceedings. Proceedings of Machine Learning Research. (To appear)

(13)

(n.d.). Hybrid ADS. Retrieved from https://github.com/Jaxan/hybrid-ads (Source
code) (34)

(n.d.). Nominal LStar in polynomial time?. Retrieved from https://joshuamoerman.nl
/papers/2017/17popl-learning-nominal-automata.html (Online note) (125)

(n.d.). ONS Haskell Library. Retrieved from https://github.com/Jaxan/ons-hs/ (Source
code) (117)

Moerman, J. & Rot, J. (2019). Separation and Renaming in Nominal Sets. (Under submission)
(12 and 131)

Moerman, J., Sammartino, M., Silva, A., Klin, B., & Szynwelski, M. (2017). Learning nominal
automata. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL. ACM. doi:10.1145/3009837.3009879

(12, 75, 110–111, 122, and 144)

Moerman, J., Szynwelski, M., & Klin, B. (n.d.). Nominal LStar. Retrieved from https://github
.com/Jaxan/nominal-lstar (Source code) (104)

Montanari, U. & Pistore, M. (1997). An Introduction to History Dependent Automata. Electr.
Notes Theor. Comput. Sci., 10, 170–188. doi:10.1016/S1571-0661(05)80696-6 (110)

Montanari, U. & Sammartino, M. (2014). A network-conscious (π)-calculus and its coalgebraic
semantics. Theor. Comput. Sci., 546, 188–224. doi:10.1016/j.tcs.2014.03.009 (76)

Moore, E. F. (1956). Gedanken–experiments on Sequential Machines. In Sequential Machines,
Automata Studies, Annals of Mathematical Studies, no.34. Princeton University Press.

(5, 26, 60, and 64)

Murawski, A. S., Ramsay, S. J., & Tzevelekos, N. (2015). Bisimilarity in Fresh-Register Au-
tomata. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS. IEEE
Computer Society. doi:10.1109/LICS.2015.24 (128)

(2018). Polynomial-Time Equivalence Testing for Deterministic Fresh-Register Au-
tomata. In 43rd International Symposium onMathematical Foundations of Computer Science,
MFCS. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.MFCS
.2018.72 (128)

http://dx.doi.org/10.1007/978-3-642-28756-5_32
http://dx.doi.org/10.1007/978-3-642-28756-5_32
http://dx.doi.org/10.1007/978-3-642-19835-9_18
https://github.com/Jaxan/hybrid-ads
https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html
https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html
https://github.com/Jaxan/ons-hs/
http://dx.doi.org/10.1145/3009837.3009879
https://github.com/Jaxan/nominal-lstar
https://github.com/Jaxan/nominal-lstar
http://dx.doi.org/10.1016/S1571-0661(05)80696-6
http://dx.doi.org/10.1016/j.tcs.2014.03.009
http://dx.doi.org/10.1109/LICS.2015.24
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.72
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.72

160

Niese, O. (2003). An integrated approach to testing complex systems. (PhD thesis). Technical
University of Dortmund, Germany. Retrieved from http://eldorado.uni-dortmund.de
:8080/0x81d98002_0x0007b62b (76)

Object Management Group (OMG) (2004). Unified modeling language specification: Version 2,
revised final adopted specification. Retrieved from http://www.uml.org/#UML2.0
(Website) (46 and 53)

O’Hearn, P. W. (2003). On bunched typing. J. Funct. Program., 13(4), 747–796. doi:10.1017
/S0956796802004495 (132)

Peled, D. A., Vardi, M. Y., & Yannakakis, M. (2002). Black Box Checking. Journal of Automata,
Languages and Combinatorics, 7(2), 225–246. (4)

Petrenko, A. (1997). Technical Correspondence Comments on "A Reduced Test Suite for Pro-
tocol Conformance Testing". ACM Trans. Softw. Eng. Methodol., 6(3), 329–331. doi:10
.1145/258077.265733 (26)

Petrenko, A., Li, K., Groz, R., Hossen, K., & Oriat, C. (2014). Inferring Approximated Models
for Systems Engineering. In 15th International IEEE Symposium on High-Assurance Sys-
tems Engineering, HASE. IEEE Computer Society. doi:10.1109/HASE.2014.46 (21)

Petrenko, A. & Yevtushenko, N. (2014). Adaptive Testing of Nondeterministic Systems with
FSM. In 15th International IEEE Symposium on High-Assurance Systems Engineering,
HASE. IEEE Computer Society. doi:10.1109/HASE.2014.39 (39)

Petrenko, A., Yevtushenko, N., Lebedev, A., &Das, A. (1993). Nondeterministic StateMachines
in Protocol Conformance Testing. In Protocol Test Systems, VI, Proceedings of the IFIP
TC6/WG6.1 Sixth International Workshop on Protocol Test systems. North-Holland.

(27)

Pitts, A.M. (2013). Nominal sets: Names and symmetry in computer science (S. Abramsky, P. Aczel,
Y. Gurevich, & J. Tucker, Eds.). Cambridge University Press.

(76, 84, 87, 110–111, 132–134, 136, and 140)

(2014). Nominal Presentation of Cubical Sets Models of Type Theory. In 20th Interna-
tional Conference on Types for Proofs and Programs, TYPES. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2014.202 (135)

(2016). Nominal techniques. SIGLOG News, 3(1), 57–72. doi:10.1145/2893582.2893594
(110 and 132)

Ploeger, B. (2005). Analysis of concurrent state machines in embedded copier software. (thesis).
Master’s thesis, Eindhoven University of Technology. (43 and 56)

Raffelt, H., Merten, M., Steffen, B., &Margaria, T. (2009). Dynamic testing via automata learn-
ing. STTT, 11(4), 307–324. doi:10.1007/s10009-009-0120-7 (43)

Raffelt, H., Steffen, B., Berg, T., &Margaria, T. (2009). LearnLib: a framework for extrapolating
behavioral models. STTT, 11(5), 393–407. doi:10.1007/s10009-009-0111-8 (42)

http://eldorado.uni-dortmund.de:8080/0x81d98002_0x0007b62b
http://eldorado.uni-dortmund.de:8080/0x81d98002_0x0007b62b
http://www.uml.org/#UML2.0
http://dx.doi.org/10.1017/S0956796802004495
http://dx.doi.org/10.1017/S0956796802004495
http://dx.doi.org/10.1145/258077.265733
http://dx.doi.org/10.1145/258077.265733
http://dx.doi.org/10.1109/HASE.2014.46
http://dx.doi.org/10.1109/HASE.2014.39
http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.202
http://dx.doi.org/10.1145/2893582.2893594
http://dx.doi.org/10.1007/s10009-009-0120-7
http://dx.doi.org/10.1007/s10009-009-0111-8

161

Rivest, R. L. & Schapire, R. E. (1993). Inference of Finite Automata Using Homing Sequences.
Inf. Comput., 103(2), 299–347. doi:10.1006/inco.1993.1021 (39 and 90)

Rot, J. C. (2015). Enhanced Coinduction. (PhD thesis). Leiden University, the Netherlands.
Retrieved from http://hdl.handle.net/1887/35814 (36)

Rutten, J. J. M.M. (1998). Automata andCoinduction (An Exercise in Coalgebra). InCONCUR
’98: Concurrency Theory, 9th International Conference, Proceedings. Springer. doi:10.1007
/BFb0055624 (36)

(2000). Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1), 3–80.
doi:10.1016/S0304-3975(00)00056-6 (147)

Sabnani, K. K. & Dahbura, A. T. (1988). A Protocol Test Generation Procedure. Computer
Networks, 15, 285–297. doi:10.1016/0169-7552(88)90064-5 (26)

Sakamoto, H. (1997). Learning Simple Deterministic Finite-Memory Automata. InAlgorithmic
Learning Theory, 8th International Conference, ALT, Proceedings. Springer. doi:10.1007/3
-540-63577-7_58 (9 and 105)

Schöpp, U. (2006). Names and binding in type theory. (PhD thesis). University of Edinburgh,
UK. Retrieved from http://hdl.handle.net/1842/1203 (136)

Schuts, M., Hooman, J., & Vaandrager, F. W. (2016). Refactoring of Legacy Software Using
Model Learning and Equivalence Checking: An Industrial Experience Report. In Inte-
grated Formal Methods - 12th International Conference, IFM, Proceedings. Springer. doi:10
.1007/978-3-319-33693-0_20 (4)

Segoufin, L. (2006). Automata and Logics for Words and Trees over an Infinite Alphabet. In
Computer Science Logic, 20th International Workshop, CSL, Proceedings. Springer. doi:10
.1007/11874683_3 (110)

Selic, B., Gullekson, G., & Ward, P. T. (1994). Real-time object-oriented modeling. Wiley. (46)

Shinwell, M. R. (2006). Fresh O’Caml: Nominal Abstract Syntax for the Masses. Electr. Notes
Theor. Comput. Sci., 148(2), 53–77. doi:10.1016/j.entcs.2005.11.040 (101 and 107–108)

Shinwell, M. R. & Pitts, A. M. (2005, feb). Fresh objective Caml user manual. (Technical report,
No. UCAM-CL-TR-621). University of Cambridge, Computer Laboratory. Retrieved
from https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-621.pdf (128)

Silva, A., Bonchi, F., Bonsangue, M. M., & Rutten, J. J. M. M. (2013). Generalizing determiniza-
tion from automata to coalgebras. Logical Methods in Computer Science, 9(1). doi:10.2168
/LMCS-9(1:9)2013 (149)

Simão, A. & Petrenko, A. (2010). Fault Coverage-Driven Incremental Test Generation. Comput.
J., 53(9), 1508–1522. doi:10.1093/comjnl/bxp073 (38)

(2014). Generating Complete and Finite Test Suite for ioco: Is It Possible?. In Proceed-
ings Ninth Workshop on Model-Based Testing, MBT. Author. doi:10.4204/EPTCS.141.5

(39)

http://dx.doi.org/10.1006/inco.1993.1021
http://hdl.handle.net/1887/35814
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1016/0169-7552(88)90064-5
http://dx.doi.org/10.1007/3-540-63577-7_58
http://dx.doi.org/10.1007/3-540-63577-7_58
http://hdl.handle.net/1842/1203
http://dx.doi.org/10.1007/978-3-319-33693-0_20
http://dx.doi.org/10.1007/978-3-319-33693-0_20
http://dx.doi.org/10.1007/11874683_3
http://dx.doi.org/10.1007/11874683_3
http://dx.doi.org/10.1016/j.entcs.2005.11.040
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-621.pdf
http://dx.doi.org/10.2168/LMCS-9(1:9)2013
http://dx.doi.org/10.2168/LMCS-9(1:9)2013
http://dx.doi.org/10.1093/comjnl/bxp073
http://dx.doi.org/10.4204/EPTCS.141.5

162

Simão, A., Petrenko, A., & Yevtushenko, N. (2009). Generating Reduced Tests for FSMs with
Extra States. In TestCom/FATES, Proceedings. Springer. doi:10.1007/978-3-642-05031-2_9

(38)

Simmons, H. (n.d.). The topos of actions on a monoid. Retrieved from http://www.cs.man.ac.uk/
~hsimmons/DOCUMENTS/PAPERSandNOTES/Rsets.pdf (Unpublished manuscript,
number 12N) (134)

Smeenk, W., Moerman, J., Vaandrager, F. W., & Jansen, D. N. (2015a). Applying Automata
Learning to Embedded Control Software. In Formal Methods and Software Engineer-
ing - 17th International Conference on Formal Engineering Methods, ICFEM, Proceedings.
Springer. doi:10.1007/978-3-319-25423-4_5 (11, 41, and 71–72)

(2015b). Applying Automata Learning to Embedded Control Software. Author. Re-
trieved from http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/ (Learned
models and resources) (44)

Smetsers, R. &Moerman, J. (n.d.). Partition. Retrieved fromhttps://github.com/Jaxan/partition
(Source code) (71)

Smetsers, R., Moerman, J., & Jansen, D. N. (2016). Minimal Separating Sequences for All Pairs
of States. In Language and Automata Theory and Applications - 10th International Confer-
ence, LATA, Proceedings. Springer. doi:10.1007/978-3-319-30000-9_14 (11 and 59)

Smetsers, R., Moerman, J., Janssen, M., & Verwer, S. (2016). Complementing Model Learning
with Mutation-Based Fuzzing. CoRR, abs/1611.02429. Retrieved from http://arxiv.org
/abs/1611.02429 (13)

Smetsers, R., Volpato, M., Vaandrager, F. W., & Verwer, S. (2014). Bigger is Not Always Better:
on the Quality of Hypotheses in Active Automata Learning. In Proceedings of the 12th
International Conference on Grammatical Inference, ICGI. JMLR.org. Retrieved from http:
//jmlr.org/proceedings/papers/v34/smetsers14a.html (57)

Staton, S. (2007). Name-passing process calculi: operational models and structural operational se-
mantics. (PhD thesis). University of Cambridge, UK. Retrieved from https://www.cl
.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf (149)

Steffen, B., Howar, F., & Merten, M. (2011). Introduction to Active Automata Learning from
a Practical Perspective. In Formal Methods for Eternal Networked Software Systems - 11th
International School SFM, Advanced Lectures. Springer. doi:10.1007/978-3-642-21455-4_8

(42)

Szynwelski, M. (n.d.). Nλ. Retrieved fromhttps://www.mimuw.edu.pl/~szynwelski/nlambda/
(Website & Source code) (103)

Tappler, M., Aichernig, B. K., & Bloem, R. (2017). Model-Based Testing IoT Communication
via Active Automata Learning. In ICST, Proceedings. IEEE Computer Society. doi:10
.1109/ICST.2017.32 (4)

http://dx.doi.org/10.1007/978-3-642-05031-2_9
http://www.cs.man.ac.uk/~hsimmons/DOCUMENTS/PAPERSandNOTES/Rsets.pdf
http://www.cs.man.ac.uk/~hsimmons/DOCUMENTS/PAPERSandNOTES/Rsets.pdf
http://dx.doi.org/10.1007/978-3-319-25423-4_5
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/
https://github.com/Jaxan/partition
http://dx.doi.org/10.1007/978-3-319-30000-9_14
http://arxiv.org/abs/1611.02429
http://arxiv.org/abs/1611.02429
http://jmlr.org/proceedings/papers/v34/smetsers14a.html
http://jmlr.org/proceedings/papers/v34/smetsers14a.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf
http://dx.doi.org/10.1007/978-3-642-21455-4_8
https://www.mimuw.edu.pl/~szynwelski/nlambda/
http://dx.doi.org/10.1109/ICST.2017.32
http://dx.doi.org/10.1109/ICST.2017.32

163

Türker, U. C. & Yenigün, H. (2014). Hardness and inapproximability of minimizing adaptive
distinguishing sequences. Formal Methods in System Design, 44(3), 264–294. doi:10
.1007/s10703-014-0205-0 (39)

Urban, C. & Tasson, C. (2005). Nominal Techniques in Isabelle/HOL. In Automated Deduction
- CADE-20, 20th International Conference on Automated Deduction, Proceedings. Springer.
doi:10.1007/11532231_4 (128)

Vaandrager, F., Aarts, F., van den Bos, P., Fedotov, A., Fiterau-Brostean, P., Howar, F., … de
Ruiter, J. (n.d.). The Automata Wiki. Retrieved from http://automata.cs.ru.nl/ (Website)

(39 and 44)

Vaandrager, F. W. (2017). Model learning. Commun. ACM, 60(2), 86–95. doi:10.1145/2967606
(110 and 126)

Valmari, A. & Lehtinen, P. (2008). Efficient Minimization of DFAs with Partial Transition
Functions. In Symposium on Theoretical Aspects of Computer Science, STACS. Author. Re-
trieved from http://arxiv.org/abs/0802.2826 (62)

Vasilevskii, M. P. (1973). Failure diagnosis of automata. Cybernetics and Systems Analysis, 9(4),
653–665. doi:10.1007/BF01068590 (Translated from Kibernetika, No. 4, pp. 98-108,
July-August, 1973) (6, 26, 35, 43, and 49)

Venhoek, D. & Moerman, J. (n.d.). ONS. Retrieved from https://github.com/davidv1992/ONS
(Source code) (117)

Venhoek, D., Moerman, J., & Rot, J. (2018). Fast Computations on Ordered Nominal Sets.
In Theoretical Aspects of Computing - ICTAC - 15th International Colloquium, Proceedings.
Springer. doi:10.1007/978-3-030-02508-3_26 (12 and 109)

van den Bos, P., Janssen, R., & Moerman, J. (2017). n-Complete Test Suites for IOCO. In ICTSS
2017 Proceedings. Springer. doi:10.1007/978-3-319-67549-7_6 (13 and 39)

(2018). n-Complete Test Suites for IOCO. Software Quality Journal. Advanced online
publication. doi:10.1007/s11219-018-9422-x (13)

van den Bos, P. & Stoelinga, M. (2018). Tester versus Bug: A Generic Framework for Model-
Based Testing via Games. In Proceedings GandALF. Open Publishing Association. doi
:10.4204/EPTCS.277.9 (39)

http://dx.doi.org/10.1007/s10703-014-0205-0
http://dx.doi.org/10.1007/s10703-014-0205-0
http://dx.doi.org/10.1007/11532231_4
http://automata.cs.ru.nl/
http://dx.doi.org/10.1145/2967606
http://arxiv.org/abs/0802.2826
http://dx.doi.org/10.1007/BF01068590
https://github.com/davidv1992/ONS
http://dx.doi.org/10.1007/978-3-030-02508-3_26
http://dx.doi.org/10.1007/978-3-319-67549-7_6
http://dx.doi.org/10.1007/s11219-018-9422-x
http://dx.doi.org/10.4204/EPTCS.277.9
http://dx.doi.org/10.4204/EPTCS.277.9

164

Titles in the IPA Dissertation Series since 2016

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Faculty
of Mathematics and Natural Sciences,
UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty of
Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time Re-
quirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models to
Safety Assurance – Applying Model-Based
Techniques to Support Safety Assurance.
Faculty of Mathematics and Computer
Science, TU/e. 2016-06

B. Ege. Physical Security Analysis of
Embedded Devices. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Deci-
sion Diagrams. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2016-09

I. David. Run-time resource management
for component-based systems. Faculty of
Mathematics and Computer Science,
TU/e. 2016-10

A.C. van Hulst. Control Synthesis using
Modal Logic and Partial Bisimilarity – A
Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineer-
ing, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics
of Requirements Process Improvement.
Faculty of Mathematics and Computer
Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile Commu-
nication Security. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-13

J.N. van Rijn. Massively Collabora-
tive Machine Learning. Faculty of
Mathematics and Natural Sciences,
UL. 2016-14

166

M.J. Steindorfer. Efficient Immutable
Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Efficient
Energy Management of Multiprocessor
Streaming Applications via Model Check-
ing. Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems – Fault tree
analysis via Markov reward automata.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of
Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of private
matters: Privacy of communication on
the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics
and Computer Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty of
Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Lim-
itations and Opportunities. Faculty of
Science, UvA. 2017-07

W. Lueks. Security and Privacy via Cryp-
tography – Having your cake and eating

it too. Faculty of Science, Mathematics
and Computer Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific Lan-
guages. Faculty of Mathematics and
Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Verifica-
tion of Synchronisation Classes in Java:
A Practical Approach. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2018-01

S. Darabi. Verification of Program Par-
allelization. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2018-02

J.R. Salamanca Tellez. Coequations and
Eilenberg-type Correspondences. Faculty
of Science, Mathematics and Computer
Science, RU. 2018-03

P. Fiterău-Broștean. Active Model
Learning for the Analysis of Network Pro-
tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java

167

Code. Faculty of Mathematics and
Computer Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic.
Faculty of Science, Mathematics and
Computer Science, RU. 2018-06

A. Lele. Response Modeling: Model
Refinements for Timing Analysis of Run-
time Scheduling in Real-time Streaming
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and
programming. Faculty of Mathematics
and Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of railway
maintenance: Analysis and optimization
of maintenance via fault trees and statisti-
cal model checking. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2018-10

F. Yang. A Theory of Executability: with
a Focus on the Expressivity of Process
Calculi. Faculty of Mathematics and
Computer Science, TU/e. 2018-11

L. Swartjes. Model-based design of bag-
gage handling systems. Faculty of Me-
chanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Simi-
larity Measures for Curves and Surfaces.

Faculty of Mathematics and Computer
Science, TU/e. 2018-13

M. Talebi. Scalable Performance Analy-
sis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quantita-
tive security analysis using attack trees.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2018-15

M.M. Beller. An Empirical Evaluation
of Feedback-Driven Software Develop-
ment. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2018-16

M. Mehr. Faster Algorithms for Geo-
metric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User Behav-
ior: Identification, Analysis and Un-
derstanding of Deviations. Faculty of
Mathematics and Computer Science,
TU/e. 2018-18

P.A. Inostroza Valdera. Structuring
Languages as Object-Oriented Libraries.
Faculty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance - Model-
Based Testing of Stochastic Behaviour.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2018-20

168

A. Serrano Mena. Type Error Cus-
tomization for Embedded Domain-
Specific Languages. Faculty of Science,
UU. 2018-21

S.M.J. de Putter. Verification of Concur-
rent Systems in a Model-Driven Engineer-
ing Workflow. Faculty of Mathematics
and Computer Science, TU/e. 2019-01

S.M. Thaler. Automation for Informa-
tion Security using Machine Learning.
Faculty of Mathematics and Computer
Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova. Practi-
cal General Top-down Parsers. Faculty of
Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Problems.
Faculty of Mathematics and Computer
Science, TU/e. 2019-05

J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learning.
Faculty of Science, Mathematics and
Computer Science, RU. 2019-06

Curriculum Vitae

Joshua Moerman was born in 1991 in Utrecht, the Netherlands. After graduating gym-
nasium at the Christiaan Huygens College in Eindhoven, 2009, he followed a double
bachelor programme in mathematics and computer science at the Radboud University in
Nijmegen. In 2013, he obtained both bachelors summa cum laude and continued with a
master in mathematics. He obtained the degree of Master of Science in Mathematics
summa cum laude in 2015, with a specialisation in algebra and topology.

In February 2015, he started his Ph.D. research under supervision of Frits Vaan-
drager, Sebastiaan Terwijn, and Alexandra Silva. This was a joint project between the
computer science institute (iCIS) and the mathematics departement (part of IMAPP)
of the Radboud University. During the four years of his Ph.D. research, he spent a
total of six months at the University College London, UK.

As of April 2019, Joshua works as a postdoctoral researcher in the group of Joost-
Pieter Katoen at the RWTH Aachen, Germany.

170

	Samenvatting
	Summary
	Acknowledgements
	1 Introduction
	1 Model Learning
	2 Applications of Model Learning
	3 Research challenges
	4 Black Box Testing
	5 Nominal Techniques
	6 Contributions
	7 Conclusion and Outlook

	2 FSM-based Test Methods
	1 Mealy machines and sequences
	2 Test generation methods
	3 Hybrid ADS method
	4 Overview
	5 Proof of completeness
	6 Related Work and Discussion

	3 Applying Automata Learning to Embedded Control Software
	1 Engine Status Manager
	2 Learning the ESM
	3 Verification
	4 Conclusions and Future Work

	4 Minimal Separating Sequences\\for All Pairs of States
	1 Preliminaries
	2 Minimal Separating Sequences
	3 Optimising the Algorithm
	4 Application in Conformance Testing
	5 Experimental Results
	6 Conclusion

	5 Learning Nominal Automata
	1 Overview of the Approach
	2 Preliminaries
	3 Angluin's Algorithm for Nominal DFAs
	4 Learning Non-Deterministic Nominal Automata
	5 Implementation and Preliminary Experiments
	6 Related Work
	7 Discussion and Future Work

	6 Fast Computations on Ordered Nominal Sets
	1 Nominal sets
	2 Representation in the total order symmetry
	3 Implementation and Complexity of ONS
	4 Results and evaluation in automata theory
	5 Related work
	6 Conclusion and Future Work

	7 Separation and Renaming in Nominal Sets
	1 Monoid actions and nominal sets
	2 A monoidal construction from $\perm $-sets to $\sb $-sets
	3 Nominal and separated automata
	4 Related and future work

	Bibliography
	Curriculum Vitae

