
PP is not a monad?!

(where P is covariant)

Joshua Moerman

June 2017

Since the dawn of time, people have tried to use the double power-set functor to model
alternating automata. Unfortunately, as Bartek Klin’s notes show, many mistakes have
been made in such attempts. In this note, I will give a concrete counterexample showing
that a naive choice for η and µ do not define a monad (PP, η, µ). Additionally, it is
shown abstractly how one of the monad laws fail. This may give insight as how to tackle
the problem.

Let P be the covariant, finitary power-set functor from Set to Set. Typically, it is
used to define non-deterministic automata (NFAs) coalgebraically: X → 2 × P(X)A.
Successors are models as sets of states. Similarly, we may want to define alternating
automata as coalgebras of the type X → 2 × P(P(X))A. Here successors are modelled
by a set of forks, which in turn are modelled as sets of states. A fork is accepting if all
its branches are accepting (i.e. the inner power-set is considered conjunctively) and a
set of forks accepts if one of the forks accepts (i.e. the outer power-set is considered dis-
junctively). Jurriaan Rot and Bartek Klin give trace semantics for this type of systems.
Crucially to their approach is the following natural transformation (which is called the
cross-cut operator on Wikipedia):

χ : PP ⇒ PP

χ : S 7→ {V ⊆
⋃
S | U ∩ V 6= ∅ for all U ∈ S}.

Intuitively, this converts a CNF formula to a DNF formula. The authors warn that this
map is not a distributive law (over the monad P). Since mathematics is about wishful
thinking, we can still try to define a monad structure with this map.

1 Attempt to make PP into a monad

Let (P, η1, µ1) be the covariant finitary power-set monad given on objects by P(X) =
{Y ⊆ X finite}, on maps by P(f)(U) = {f(x) | x ∈ U}, with the unit η1(x) = {x} and
multiplication µ1(U) =

⋃
U .

1



We define a potential unit and multiplication map for PP:

η2 : 1
η1
=⇒ P η1

=⇒ P2

µ2 : P4 Pχ
=⇒ P4 µ1

=⇒ P3 Pµ1
==⇒ P2.

(We note that η2 = Pη1 ◦ η1 and µ2 = µ1 ◦P2µ1 ◦Pχ by naturality.) The multiplication
is a natural thing to do: we start with a formula of the form

∨∧∨∧
, which is converted

to
∨∨∧∧

by Pχ and then we flatten twice to get
∨∧

as required.
This is the standard construction for a monad structure if χ is a distributive law.

Now, χ is not a distributive law, but the construction might still give a monad (the
requirement of being a distributive law is sufficient but not necessary). We will show
that this is not the case.

1.1 The non-commuting triangle

In order for the standard proof to work, we need the following two triangles (and another
square, not shown) to commute:

P PP

PP

η1

Pη1
χ

P PP

PP

Pη1

η1
χ

The first triangle commutes (note that V ∩ {u} for all u implies U ⊆ V ):

χ(Pη1(U)) = χ{{u} | u ∈ U}
= {V ⊆ U | V ∩ {u} 6= ∅ for all u ∈ U}
= {U}
= η1(U).

The second does not commute:

χ(η1(U)) = χ{U}
= {V ⊆ U | V 6= ∅}
% {{u} | u ∈ U}
= Pη1(U).

Interestingly, χ(η1(U)) is the upward closure of Pη1(U). It does not commute, but
it seems pretty harmless. Indeed, this was fine for the trace semantics in the paper by
Jurriaan Rot and Bartek Klin. Let’s see where the monad laws fail, now that we know
that this particular triangle does not commute. The triangle is used to prove one of the
unit laws for the monad. Here we spell out the standard proof using that triangle. We
do so for general monads T and K (in order not to confuse the two Ps).

2



TK TTK TKTK

TTKK

TTK

TK

ηT

id

TηK

TTηK
Tχ

TTµK

µT

proves

TK TKTK

TK

η

id µ

We see that the second triangle is used in the upper right corner (wrapped inside the T
functor). We cannot yet conclude that the monad law does not hold. So far, we have
only seen that the upper right corner of the big diagram does not commute. It may
happen that the multiplication for the power-set monad does not care about upward-
closures of sets, and that the big diagram still commutes. With a concrete calculation
we will see that it does not commute.

Take X = {♣,♠}, and S = {{♣}, {♠}} ∈ PPX. Then η2S = {{{{♣}, {♠}}}}.
Applying χ on the inner set gives: χ{{{♣}, {♠}}} = {{{♣}}, {{♠}}, {{{♣}, {♠}}}}.
Then with both multiplications we get: µ2η2S = {{♣}, {♠}, {♣,♠}} 6= S.

This concludes that (PP, η2, µ2) is not a monad. Note that this does not mean that
there exists no monad structure on PP, it only means that this natural candidate does
not work out.

2 Potential fixes

2.1 Lists

I have seen Filippo Bonchi and Fabio Zanasi use lists of lists instead of sets of sets to
model alternating automata. Personally, I find that very unsatisfactory, as one then
throws away associativity, commutativity and even idempotency. So I think it has little
to do with non-determinism or alternating automata.

2.2 Distributive lattices

If we insist that the construction is made from the usual power-set, then I think we have
to consider that monad as an adjunction:

P : Set � JSL : U,

where U is the forgetful functor and JSL is the category of join-semilattices (and mono-
tone maps). Then we can ask ourselves: what is the appropriate power-set construction
on JSL? We can define P ′(X) = {f : X → {⊥,>} | f monotone}. This happens to be

3



exactly the up-sets (or down-set, depending on perspective). And so these are upward
closed (this resonates with the failure above). However, it is not immediately clear that
there is a proper covariant functor with this definition.

I computed P ′P on small finite sets and got sets with the same sizes as free distribu-
tive lattices. This makes sense, because we are adding operations in two steps:

Set � JSL � DL,

where DL is for distributive lattices. Of course, one still needs to check that P ′ is in-
deed a functor (and, indeed, left adjoint to the forgetful functor). If this works out,
it is particularly pretty, because it relates the definition of alternating automata using
boolean formulas (i.e. the free distributive lattice) with a two-step power-set construc-
tion. It also means that one can determinise an alternating automata in either JSL (as
non-deterministic automaton) or in Set (as deterministic automaton).

It may be necessary to consider P as functor Set →MSL, using meet-semilattices
instead. The category of meet-semilattices is equivalent to that of join-semilattices, the
only difference is how we think of it. Only the details of P ′ will tell what the right
interpretation is.

2.3 Still try PP

It is still possible, however, that some monad structure exists on PP. But it’s not very
easy to settle this issue. One approach might be by enumerating all natural transfor-
mations λ : PP ⇒ PP and check whether it is a distributive law. But maybe a monad
structure arises in a different way (not via the standard distributive law construction).
Who knows?

To be continued...

4


