
= ×

Example: keyb

41 states 22 states 36 states

Example: bbara

= ×

In model learning one big problem is scalability. Big

systems need many queries in order to be learnt.

So we have to look for structure which we can exploit.

In this paper we look at parallel composition.

Learning Product Automata

Product Learner TTT Learner

Machine States Components EQs MQs Actions EQs MQs Actions

M4 64 4 8 456 3 025 6 1 058 13 824

M5 160 5 6 869 7 665 17 2 723 34 657

M6 384 6 11 1 383 12 870 25 6 250 90 370

M7 896 7 11 2 087 24 156 52 14 627 226 114

M8 2048 8 13 3 289 41 732 160 34 024 651 678

bbara 7 2 3 167 1 049 3 216 1 535

mark1 202 8 22 13 027 117 735 67 15 192 252 874

keyb 41 2 25 12 464 153 809 24 6024 265 805

ex3 28 2 24 1 133 9 042 18 878 91 494

Joshua Moerman moerman@science.ru.nl

A
i

o1

o2

A2

A1
i

o1

o2

The problem

Decomposition and learning

The teacher answers output queries and equivalence

queries for the machine A. The learning algorithm will

infer the components A1 and A2 simultaneously.

Two approaches:

• Direct L* extension, or

• Reducing to existing learning algorithms (below)

Advantages vs. learning A

• More efficient to learn smaller automata.

Advantages vs. learning A1 and A2 independently:

• Sharing queries and counterexamples.

Results

The product learner is implemented in LearnLib. We compare it to the efficient TTT algorithm. We measure:

• EQs: number of equivalence queries posed

• MQs: number of membership queries posed

• Actions: total number of actions performed on the system (this includes testing for equivalence)

On all examples the product learner is more efficient in terms of actions.

7 states 4 states 4 states

Convergence

Number of states increases monotonically per

component. Hence convergence is guaranteed.

Nevertheless, number of states for the intermediate

hypotheses may actually exceed that of the target!

1

10

100

1000

10000

100000

0 5 10 15 20

Number of reachable states vs. Hypothesis (mark1)

Paper: https://arxiv.org/abs/1705.02850

Code: https://gitlab.science.ru.nl/moerman/learning-product-automata

Algorithm

Mealy machines can be decomposed if they have

multiple observables. Having smaller subcomponents

is beneficial for many algorithms (divide & conquer).

In this example, the number of states in the product

hypothesis actually grew beyond 202 states during

the learning process. Nonetheless, the product

learner was more efficient than TTT.

