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Abstract We use SAT-solving to construct adaptive distinguishing se-
quences and unique input / output sequences for finite state machines in
the flavour of Mealy machines. These sequences solve the state identifica-
tion and state verification problems respectively. Preliminary experiments
evaluate our implementation and show that this approach via SAT-solving
works well and is able to find many short sequences.
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1 Introduction

In a paper by Lee and Yannakakis [LY94], the notion of adaptive distinguishing
sequence (ADS) is developed. Such a sequence is a (single) experiment which
can determine exactly in which state a given finite state machine (FSM) is.
The experiment consists of input symbols for the FSM, which may depend on
the outputs of the FSM observed so far (making it adaptive). The goal of the
experiment is to determine exactly in which state the given FSM is at the start
of the experiment (making it distinguishing). We use the formalism of Mealy
machines to model FSMs; but the techniques can also be adapted to Moore
machines and DFAs. Whether such an experiment exists for the whole machine
can be decided efficiently. In the special case where we have prior knowledge that
the machine is in one of two states, such a sequence always exists and can also
be found efficiently. Despite these positive results, the general problem is hard:

Theorem [LY94, Theorem 3.4]. Given an FSM and a set of possible initial
states, it is PSpace-complete to tell whether there is an experiment that identifies
the initial state.

Nonetheless, the problem is of practical interest. For instance, the L♯ al-
gorithm [VGRW22] learns an opaque FSM based on its input / output behaviour,
that is without having access to the internal transition structure. It does so by
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successively exhibiting distinct states in the FSM that differ in their behaviour,
that is, states that are provably apart. Whenever a longer trace of the FSM is
observed, the algorithm has to identify whether this leads to the same state as
one of the exhibited states so far. Hence, it would be useful if there is a single
experiment from which we could determine in which state the FSM is. In such
a learning algorithm, the queries are often the bottleneck, since they interact
with embedded devices with restricted communication speed. So even though the
learning can be done in polynomial time, it may be worth some extra computation
to reduce the query size or the number of resets.

In this paper, we will use SAT solvers to construct two types of experi-
ments: adaptive distinguishing sequences and unique input/output sequences.
The problem of deciding the existence of these sequences is PSpace-complete.
Our motivation typically asks for short experiments, and so we will fix a bound
(polynomial in the size of the automaton). This bound ensures that the problem
is in NP and so a reduction to SAT is possible. This preference towards short
experiments is perfectly in line with the setting of learning where one can run
multiple short experiments instead of a single long one.

Dedication

This paper is dedicated to Frits Vaandrager who was our supervisor and co-author.
Frits was the first author’s PhD supervisor: In the very first week of my PhD,

he gave me a very well-defined task: read the paper by Lee and Yannakakis [LY94]
and implement their algorithm. This was a fun start of my research and brought
us useful insights in the area of model learning. I am very thankful to Frits that
he gave me such interesting problems at the start.

Frits is the supervisor of the second author’s postdoc studies: since starting
in Nijmegen, Frits introduced me to the realm of automata learning and testing.
Those numerous research discussions finally led to the L♯ algorithm [VGRW22],
which makes great use of adaptive (and ordinary) distinguishing sequences.

Now, we once again return to those basic concepts of finite state machines,
as there is still more to discover about adaptive distinguishing sequences and
unique input / output sequences.

2 State Identification and Verification

As commonly done in (software) engineering, we model the systems of interest
as (deterministic) finite state machines for a fixed finite input alphabet I and
output alphabet O.

Definition 2.1. A finite state machine M (FSM) consists of

1. a finite set Q, called the state space,
2. a function δ : Q× I → Q, called the transition function, and
3. a function λ : Q× I → O, called the output function.
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For states q, q′ ∈ Q, we write q
a/o−−→ q′ to denote δ(q, a) = q′ and λ(q, a) = o,

we call a the input and o the output of the transition. An example FSM is
visualized in Figure 1a on page 4. We do not require a specified initial state in
the definition of FSM since it is not relevant for the task of state identification
and verification. In fact, in this task, we are given an FSM in some unknown
state and need to derive from the I/O behaviour, in which state the FSM is.

Definition 2.2. The transition and output functions for an FSM inductively
extend to words:

δ : Q× I∗ → Q; δ∗(q, ϵ) := q; δ∗(q, aw) := δ∗(δ(q, a), w)

λ : Q× I∗ → O∗; λ∗(q, ϵ) := ϵ; λ∗(q, aw) := λ(q, a) · λ∗(δ(q, a), w)

The semantics, i.e. observable behaviour, of a state q ∈ Q are given as a function
JqK : I∗ → O∗ defined as

JqK(w) := λ∗(q, w) .

Two states q1 and q2 are apart [GJ21], i.e., have different observable behaviour,
written w ⊢ q1 # q2, if w ∈ I∗ is an input word on which their semantics differ:

Jq1K(w) ̸= Jq2K(w).

Since we are only concerned with observable behaviour, we assume that machines
are minimal, meaning that all distinct states in the given FSM are apart.

2.1 Testing Problems

We are in a setting where we are provided with a known machine M but do not
know in which state it currently is:

State identification: The task is to determine the state the M currently is in.
We are allowed to interact with the M by inputting symbols from I and
observing the output O. It is fine if those tests alter the current state of M .
It is our task to determine the state M was in when we were presented it.

State verification: Given a distinguished state q ∈ Q, the task is to verify
whether the FSM is in q.

In either problem, there is no way of resetting the machine. The experiment
may consist of multiple inputs and may depend on the previously produced
outputs of the machine. In the present paper we focus on state identification
and verification since they appear as important subtasks in model learning (also
called machine identification) and in conformance testing and fault detection; a
survey on these problems is given by Lee and Yannakakis [LY96].3

3 Lee and Yannakakis wrote two papers with similar titles [LY94,LY96]. The one from
1994 contains the polytime ADS algorithm in detail and the one from 1996 contains
a survey with related problems, results (such as bounds), and applications.
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(c) An ADS for {x, y, z}

Figure 1: Example of an FSM with inputs I = {i, j} and outputs O = {e, o} in
which all states are pairwise apart.

2.2 Separating and Distinguishing Sequences

The solutions of the state identification and verification problems boil down to
finding clever input sequences such that the output allows us to reason about
the states traversed:

Definition 2.3. For a machine M , a word w ∈ I∗ is

1. a separating sequence for two states p, q ∈ Q if w ⊢ p# q.
2. a unique input/output sequence (UIO) of a state p ∈ Q if w ⊢ p# q for all

other states q ∈ Q.
3. a preset distinguishing sequence (PDS) if w ⊢ p# q for all distinct states

p, q ∈ Q.

Note how each definition requires w ⊢ p#q, with the only difference being the
quantification over p and q. This also means that a PDS is automatically a UIO
and a UIO is automatically a separating sequence. See Figure 1b for examples of
separating sequences.

Separating sequences can be found very efficiently [SMJ16]. Unfortunately,
both UIO sequences and PDSs are very hard to find:

Theorem [LY94]. It is PSpace-complete to decide if a given machine has
a PDS and it is PSpace-complete to decide whether a given state in a given
machine has a UIO.

Under the assumption that NP ̸= PSpace, this PSpace-completeness implies
that these sequences are not bounded by any polynomial (otherwise we could
find them in NP time).

To overcome this hardness, Lee and Yannakakis looked more closely at the
adaptive distinguishing sequence. In this sequence of inputs, the choice of input
may depend on the output of the machine for the earlier inputs. It is a decision
tree rather than just a sequence. The adaptive nature makes it so that after each
letter a (possibly) smaller set of states is relevant, and so it becomes easier to
continue the experiment.
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Definition 2.4. We fix a machine M . An adaptive distinguishing sequence
(ADS) is a rooted tree T of which the internal nodes are labelled with input
symbols a ∈ I, the edges are labelled with output symbols o ∈ O, and the leaves
are labelled with states q ∈ Q, such that:

– all edges leaving a certain node have distinct output symbols, and
– reading the inputs and outputs while following the path to a leaf labelled q,

results in words w ∈ I∗ and v ∈ O∗ such that λ(q, w) = v.

Such a tree is called an adaptive distinguishing sequence for M if each state
q ∈ Q has a corresponding leaf.

Theorem [LY94, Theorem 3.1]. Deciding whether a machine has an ADS
can be done in polynomial time.

Example 2.5. We consider the example from Figure 1a and show that there is no
ADS for M . If the ADS would start with i (i.e. i in the root node), then it cannot
distinguish w and z because δ(w, i) = δ(z, i) and λ(w, i) = λ(z, i). Similarly,
starting with j fails to distinguish y and w. Thus, there is no ADS for the entire
FSM of Figure 1a. However, we can distinguish states for a smaller subset, for
example the tree depicted in Figure 1c distinguishes {x, y, z} (and also {x, y, w}).

A preset distinguishing sequence is also an adaptive distinguishing sequence.
And when one follows the root to a leaf in an ADS for the FSM, one obtains a
UIO for the state labelled by the leaf. So the existence of these types of sequences
are ordered:

PDS =⇒ ADS (for M) =⇒ UIOs (for all states)

None of the converse implications holds in general: For a minimal FSM M , all
pairs of states have a separating sequence, but not every state may have a UIO.
Even if every state has a UIO, there may be no ADS for M . And even if there is
an ADS, there may be no PDS.

These sequences are related by the testing problems mentioned above. If an
ADS exists for the entire FSM, then state identification can be solved with it.
Similarly, state verification can be solved with UIO sequences if they exist.

2.3 Identification in a subset of states

In the context of model learning, we may have additional insight about the FSM
in state identification and verification. Given a (partly unknown) machine M
in an unknown state, we may already exclude some states based on previous
observations, leading to the simplified version of the state identification task:

Local state identification: Given a known machine M that is currently in a
state in the subset Q0 ⊆ Q, the task is to identify the current state exactly.
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For Q0 = Q, this is the original problems posed above, and if we have only
two states (i.e., Q0 = {p, q}), then identification problem can be solved with
separating sequences. For the general problem where Q0 is an arbitrary subset of
Q, we adjust the previous sequence definitions:

Definition 2.6. For a machine M and a subset Q0 ⊆ Q, an Q0-local adaptive
distinguishing sequence is an ADS that mentions all states p ∈ Q0 in its leaves.
Likewise, an Q0-local UIO of a state p is a sequence w such that w ⊣ p# q for
all q ∈ Q0 other than p.

Surprisingly, finding an ADS for Q0 is PSpace-complete, that is, harder than
finding an ADS for Q0 = Q, visualized in Figure 2. This comes from the fact that
even if there is no ADS for the full state set Q, there may be one for a subset.
An example for such an FSM is depicted in Figure 1a which does not have an
ADS for Q = {w, x, y, z} but for the subset Q0 = {x, y, z} (Figure 1c).

|Q0| = 2 |Q0| = |Q|

P PPSpace-complete

Figure 2: The general problem of finding ADSs is PSpace-complete. But at the
extreme cases, where Q0 consists of either two states or all states, the problem is
in P.

3 Reduction to SAT Solving

SAT solving is concerned with the problem of finding a satisfying assignment
for a boolean propositional formula. This is a fundamental problem in computer
science and enjoys a lot of applications [BHvMW09]. Although the problem is
NP-complete, there exist implementations which work very well in practice.

Most solvers require the input to be in conjunctive normal form (CNF), which
is a conjunction of clauses. In turn, a clause is a disjunction of literals, where
a literal is a proposition variable or a negation of a proposition variable. Every
formula has an equivalent formula in CNF. For instance, we often deal with an
implication such as

(x1 ∧ · · · ∧ xk) =⇒ y

which is equivalent to the clause

¬x1 ∨ · · · ∨ ¬xk ∨ y .

When the conversion to CNF is straightforward (which is the case for implications),
we only present the original formula.
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Some care is required when turning arbitrary formulas into CNF, as the
formula can get substantially bigger. In order to avoid very big CNF formulas, it
is sometimes beneficial to introduce auxiliary variables, as we will later do.

Cardinality Constraints. It is very common to require that at most one of a
set of literals is satisfied, and such a constraint is called a cardinality constraint.
Such constraints can be encoded directly in CNF in a variety of ways, we use the
following definitions:

at-least-1(x1, . . . , xn) := (x1 ∨ · · · ∨ xn)

at-most-1(x1, . . . , xn) :=
∧
i ̸=j

(¬xi ∨ ¬xj)

exactly-1(x1, . . . , xn) := at-least-1(x1, . . . , xn) ∧ at-most-1(x1, . . . , xn)

Non-Boolean Variables. Often, we want to express not just boolean values,
but a variable x with a bounded domain such as {1, . . . , k}. We do this with
a one-hot encoding (also called direct encoding or sparse encoding), meaning
that we introduce k variables x1, . . . , xk, where xi means that x has value i. This
works in conjunction with the constraint exactly-1(x1, . . . , xk).

As a convention, we use subscripts for indices used in a one-hot encoding and
superscripts otherwise. For example, when we guess a word of length l from an
alphabet I, we introduce the variables xi

a for 1 ≤ i ≤ l and a ∈ I.
We will now translate the problem of finding UIO sequences and ADSs into

SAT. We will encode these problems directly in CNF.

3.1 State Verification via UIO Sequences

We fix a machine M with state space Q and a state q0 ∈ Q. Our task is to find a
UIO sequence for q0, bounded by a length l.

The encoding of finding a UIO sequence of length l is quite straightforward:
We guess the sequence, and determine the outputs of all the states when provided
with this sequence, and check that those outputs differ in at least one place with
the output of q0.

Encoding. We introduce the variables listed in Table 1.4 We could, theoretically,
encode everything in propositional logic with only the variables aq0,ia . However,
by introducing the other variables, the resulting CNF formula is much smaller
and easier to construct.
4 We use Fraktur letters to distinguish variables in our encoding, such as a, from

variables ranging over sets used as indices, such as a symbol a ∈ I. The symbols are
chosen so that a stands for alphabet, s stands for state, o stands for output and d
stands for difference.
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Table 1: Variables for the encoding of the UIO sequence for a fixed state q0.

Variable Range Meaning

aq0,ia for 1 ≤ i ≤ l, a ∈ I The UIO sequence has symbol a on index i.
sq,iq′ for q, q′ ∈ Q, 1 ≤ i ≤ l State q transitions to q′ after reading the first i

symbols from the UIO sequence.
oq,io for q ∈ Q, 1 ≤ i ≤ l, o ∈ O When state q reads the first i symbols from

the UIO sequence, then the last transition has
output o.

dq,i for 1 ≤ i ≤ l, q ∈ Q \ {q0} Auxiliary variable denoting that the runs of q0
and q for the first i symbols of the UIO sequence
end with different outputs.

One-hot encoded variables. For all the one-hot encoded variables, we require that
exactly one variable is satisfied.∧

1≤i≤l

exactly-1({aq0,ia | a ∈ I})

∧
∧
q∈Q

∧
0≤i≤l

exactly-1({sq,iq′ | q′ ∈ Q})

∧
∧
q∈Q

∧
0≤i≤l

exactly-1({oq,io | o ∈ O})

Successor states and output. If the state q is in state q′ after i symbols, it should
output λ(q′, a) on the current symbol a:∧

q∈Q

∧
1≤i≤l

∧
a∈I

(
sq,i−1
q′ ∧ aq0,ia =⇒ oq,iλ(q′,a)

)
Similarly, we encode that the successor state is consistent with the guessed word:∧

q∈Q

∧
1≤i≤l

∧
a∈I

(
sq,i−1
q′ ∧ aq0,ia =⇒ sq,iδ(q′,a)

)
In the above formulas, when i = 1, we use a new variable sq,0q′ as short-hand
notation for

sq,0q′ :=

{
⊤ if q = q′

⊥ if q ̸= q′.

Differences. So far, we have encoded a word and the according outputs starting
from each state. In order to find UIOs, we need that the outputs of q0 are different
from the outputs of others states q (at some index i). First we encode what it
means for a difference to occur, using the variables dq

′,i:∧
q′∈Q\{q0}

∧
1≤i≤l

∧
o∈O

(
dq

′,i ∧ oq0,io =⇒ ¬oq
′,i

o

)
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In words this reads: if a difference is claimed (i.e., dq,i is guessed to be true), and
if q0 outputs o, then q′ may not do so. We do not need to encode the converse
direction explicitly.

Finally, we require at least one difference for each state:∧
q′∈Q\{q0}

at-least-1
(
dq

′,1, dq
′,2, . . . , dq

′,l
)

Putting it together. Denote the conjunction of all above clauses by

UIO(M, l, q0) .

Lemma 3.1. Given a machine M , a length l, and a state q0, the CNF formula
UIO(M, l, q0) is satisfiable if and only if q0 has a UIO sequence of length l.

Improvements. In order to keep the above encoding simple, we have omitted
the following improvements from the above presentation. The improvements are
explained in more detail in the implementation.

Only encode reachable states. As presented, the variables sq,iq′ are created for all
q′ ∈ Q. This is unnecessary, and only the states reachable from q in exactly i
steps have to be considered. Similarly for the outputs.

Searching multiple UIOs. In many situations, we may want to find UIO sequences
for multiple states. It is then beneficial to re-use most of the constructed formula.
This can be achieved with incremental SAT-solving [ES03b].

Extending UIOs to obtain new UIOs. If a UIO sequence w for state q has been
found, then this could possibly lead to UIO sequences for predecessors of q.
Namely, if q′ is a state with a transition q′

a/o−−→ q and the input / output pair
(a, o) is unique among the predecessors of q, then aw is a UIO sequence for q′.

To use this idea, we define the UIO implication graph as follows. The nodes
are the states in Q, and there is an edge from q to q′ if a UIO sequence for q can
be extended (by 1 symbol) to a UIO for q′. This graph can be precomputed and
many UIOs can be found by traversing this graph. Note, however, that the found
UIOs may not be of minimal length.

Incrementing the length. The presented encoding works with a fixed bound. It
is useful to start with a low bound and increment this bound one-by-one. This
way, we can find short UIOs for many states, and only need to construct large
formulas for the states which have no short UIOs.
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3.2 State Identification via Adaptive Distinguishing Sequences

If we want to identify the current state of an FSM, we can construct an ADS for
a fixed machine M with states Q in a similar way. We fix a subset Q0 ⊆ Q of
potential initial states and a bound l on the length of the sequence. (The length
of an ADS is the depth of the tree.)

The encoding of an ADS is less straightforward than for UIO sequences,
because we are not searching for a single word, but for a tree structure. To tackle
this problem, we recall a remark by Lee and Yannakakis [LY96, Section IV.A]
which relates adaptive distinguishing sequences to sets of sequences:

“[..] we can satisfy the separation property with all sets Zi being singletons
if and only if A has an adaptive distinguishing sequence.”

The sets Zi contain sequences, and if there exists an ADS, these sets are singletons.
So, instead of searching for a tree, we may as well search for one sequence per
state (together with additional requirements). We rephrase this result in the
following lemma.

Lemma 3.2. The following are in one-to-one correspondence:

1. An adaptive distinguishing sequence for Q0 ⊆ Q
2. A map f : Q0 → I∗ such that for all q, q′ ∈ Q0 with q ̸= q′:

(a) f(q) ⊢ q # q′ (i.e. f(q) is a Q0-local UIO for q).
(b) if wa is a prefix of f(q) and JqK(w) = Jq′K(w), then wa is also a prefix of

f(q′).

Proof (Sketch). Given an ADS for Q0, define f : Q0 → I∗ as the map that sends
q ∈ Q0 to word v ∈ I∗ on the internal nodes leading to q in the ADS. This map
satisfies the two properties: (a) For q′ ∈ Q0 with q ̸= q′, the definition of ADS
implies JqK(v) ̸= Jq′K(v). (b) If wa is a prefix of v, and JqK(w) = Jq′K(w), then
q′ must also be in the subtree of the ADS to which w leads and whose node is
labelled a.

Conversely, we can recursively build an ADS from such a map f : Q0 → I∗:
if |Q0| < 2 the ADS is trivial. If Q0 has at least two elements there must be
some a ∈ I that is the prefix of all f(q), q ∈ Q0 by (b). Thus, the root is labelled
a and it has a subtree for each element of {JqK(i) | q ∈ Q0} ⊆ O. The subtree
reached via o ∈ O is recursively constructed for Q′

0 := {q ∈ Q0 | JqK(a) = o} and
f ′ : Q′

0 → I∗, f ′(q) = w with aw = f(q). ⊓⊔

Encoding. We introduce the variables listed in Table 2. The encoding is similar
to that of UIO sequences. There is one crucial difference: here every state q has
an associated word f(q) in the sense of Lemma 3.2. In order to achive that these
words describe a tree, these input words f(q), f(q′) for different states q, q′ must
be the same, as long as the two states also produce the same output symbols, as
described by the condition in Lemma 3.2.
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Table 2: Variables used for the ADS encoding

Variable Range Meaning

aq,ia for q ∈ Q0, 1 ≤ i ≤ l, a ∈ I On the word for state q the ith symbol is a.
sq,iq′ for q ∈ Q0, q

′ ∈ Q, 0 ≤ i ≤ l State q transitions to q′ after reading the first
i symbols from its word.

oq,io for q ∈ Q0, 1 ≤ i ≤ l, o ∈ O State q outputs o after reading i symbols from
its word.

dq,q
′,i for q, q′ ∈ Q0, 1 ≤ i ≤ l Auxiliary variable denoting that there is a

difference between the outputs of q and q′ at
position i.

d
q,q′,i for q, q′ ∈ Q0, 1 ≤ i ≤ l Auxiliary variable denoting that there is a dif-

ference between the outputs of q and q at posi-
tion i or earlier. This is used to allow different
input symbols.

One-hot encoded variables. We again start by requiring that every one-hot
encoded variable has exactly one value enabled:∧

q∈Q0

∧
1≤i≤l

exactly-1({aq,ia | a ∈ I})

∧
∧

q∈Q0

∧
0≤i≤l

exactly-1({sq,iq′ | q′ ∈ Q})

∧
∧

q∈Q0

∧
0≤i≤l

exactly-1({oq,io | o ∈ O})

Successor states and outputs. Similarly to the UIO sequences, we require that
the guessed successor states and outputs are consistent with the transition and
output function:∧

q∈Q0

∧
1≤i≤l

∧
q′∈Q

∧
a∈I

(
sq,i−1
q′ ∧ aq,ia =⇒ sq,iδ(q′,a)

)
∧
(
sq,i−1
q′ ∧ aq,ia =⇒ oq,iλ(q′,a)

)
Differences. If the solver claims one of the dq,q

′,i to be true, then there must be
an actual difference in output:∧

q ̸=q′∈Q0

∧
1≤i≤l

∧
o∈O

(
dq,q

′,i ∧ oq,io =⇒ ¬oq
′,i

o

)
And we encode the fact that there is at least one difference for each pairs of
states q, q′ ∈ Q0. ∧

q ̸=q′∈Q0

at-least-1
(
dq,q

′,1, dq,q
′,2, . . . , dq,q

′,l
)
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Shared prefixes. Finally, we have to assert that the words of two states are the
same as long as there is no observed difference in output. First, we encode the
“closure” of difference:∧

q ̸=q′∈Q0

(
d
q,q′,1

=⇒ dq,q
′,1
)
∧

∧
2≤i≤l

(
d
q,q′,i

=⇒ (dq,q
′,i ∨ d

q,q′,i−1
)
)

In words this means that dq,q
′,j may only hold true if some difference dq,q

′,i holds
true earlier (i.e., for some i ≤ j). (We only need to encode one direction of the
implication.)

Second, states must use the same inputs as long as d
q,q′,i is still false. Note

that the first symbols are always equal.∧
q ̸=q′∈Q0

∧
a∈I

(
aq,1a =⇒ aq

′,1
a

)
∧

∧
2≤i≤l

(
¬dq,q

′,i−1 ∧ aq,ia =⇒ aq
′,i

a

)

Putting it together. Denote the conjunction of the above clauses by

ADS(M, l,Q0) .

Lemma 3.3. Given a machine M , a length l ∈ N and a subset Q0, the formula
ADS(M, l,Q0) is satisfiable if and only if there exists an ADS for Q0 of depth l.

Improvements. Some of the same improvements mentioned for the UIO se-
quence apply here as well. Nevertheless, there is one interesting optimization
specifically for the ADS problem.

Encoding distinct successors. As long as two states q, q′ ∈ Q0 produce the same
outputs for an input word w ∈ I∗, i.e. a path in the ADS, the states must not
transition to the same state δ(q, w) = δ(q′, w), because this would make the states
indistinguishable. In the Lee and Yannakakis algorithm, this is called validity of
a split or transition. Every ADS has this validity property, so the ADS found by
the solver will also have this property. We can encode this property explicitly to
help the solver to prune the search. The following clauses state that as long as
there is no difference and one state transitions to q′′, then the other state is not
allowed to transition to q′′.∧

q ̸=q′∈Q0

∧
2≤i≤l

∧
q′′∈Q

(
¬dq,q

′,i−1 ∧ sq,iq′′ =⇒ ¬sq
′,i

q′′

)
In one instance, the solving time was reduced from 90 minutes to a mere 2
minutes. It is not unlikely that other such redundant clauses can be added to
improve the runtime.
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4 Preliminary Experimental Results

4.1 Implementation

The encoding is implemented in Python and the solving is done through the
PySAT package [IMM18]. This package supports several SAT solvers, such as
MiniSat [ES03a], Glucose [AS09]. The implementation can be found at

https://github.com/Jaxan/satuio.
Throughout the experiments, the SAT solver we use is Glucose3, as this

worked well enough on some preliminary tests. PySAT also allows different en-
codings for the cardinality constraints as explained in Section 3. We stick to
the default encoding provided by PySAT, which is based on sequential coun-
ters [Sin05].

The experiments are run on a 2020 MacBook Air (with an M1 chip) on a
single core. We use Python version 3.10.2 and PySAT version 0.1.7.dev16.

4.2 Benchmarks

We use finite state machines from the open automata wiki [NSVK18]. This wiki
contains many models from a variety of real-world domains, such as internet
communication protocols, smart cards, and embedded systems. We pick the
following two sets of models.

Small models from protocols. We have picked the models which are learned
from the DTLS implementations [FJM+20] and MQTT implementations [TAB17]
with fewer than 50 states. Both DTLS and MQTT are internet protocols with
many (open source) implementations. These are state machines with fewer than
50 states and have between 6 and 11 inputs.

Big model from an embedded system. In order to test the scalability of
the encoding, we use the biggest model from the automata wiki, which is the
ESM controller [SMVJ15]. This is a state machine in control of printer hardware
and has 3410 states and 78 inputs. This was used in a case study for automata
learning, and the automata wiki also includes the intermediate hypotheses, which
we use as a family of models of increasing size.

4.3 UIO Experiments

For the UIO sequences, we will compare our efficiency to an algorithm by
Naik [Nai97]. We only have implemented their base algorithm, which is a non-
trivial enumerative search. It searches UIO sequences for all states at the same
time, returning sequences as it finds them.

For each small benchmark, we run both algorithms with a time limit of 3
seconds. For the bigger benchmarks, we set a time limit of 10 minutes. We report
how many UIOs each algorithm finds within that time. Note that some models

https://github.com/Jaxan/satuio
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Figure 3: Results for the small benchmark, comparing our tool (⋆) and Naik’s
algorithm (◦) (timeout = 3s). The number of UIOs found as fraction of the state
space is plotted left and the average length of the found UIOs is plotted right.
Note that there may be several models with the same number of states.

500 750 1,000 1,250 1,500

0

25

50

75

100

Number of states

U
IO

s
fo

un
d

(%
)

Number of UIOs found

500 750 1,000 1,250 1,500

0

1

2

3

4

5

Number of states

A
ve

ra
ge

le
ng

th

Average length of found UIOs

Figure 4: Results for the big benchmark, comparing our tool (⋆) and Naik’s
algorithm (◦) (timeout = 10min). The number of UIOs found as fraction of the
state space is plotted left and the average length of the found UIOs is plotted
right.



State Identification and Verification with SAT 15

have states without UIO sequences, meaning that a search may take a very long
time (as the upper bound on the length is exponential). This is the reason it is
necessary to set a time bound, even for the small models. Also note that both
algorithms search in a non-deterministic way, and so one can be lucky or unlucky
in specific instances.

The results are shown in Figures 3 and 4. In almost all instances, our algorithm
was able to find more UIO sequences than the baseline algorithm. However, the
baseline algorithm results, on average, in shorter sequences. This may be because
it finds fewer, or because it finds the shortest ones first.

We also note that our tool can often find UIO sequences for all states for
the small models in a short time (3 seconds) and that the UIO sequences are
generally short. In the big benchmark, the found UIO sequences are still relatively
short, but after the first five models, we do not find UIO sequences for all states.
This is partly because not every state has a UIO sequence, and partly because
it is becoming computationally harder to find them when the number of states
increase.

4.4 ADS Experiments

For the ADS we do not have an alternative implementation. So we include some
experiments to see how well the SAT solving scales. We only run the algorithm
for the big benchmark with 3410 states and 78 inputs. (This machine does not
admit an ADS for all states.) For the set of potential initial states, Q0, we pick a
random subset of specified size and set the bound (i.e., depth of the tree) to be 7.
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Figure 5: Finding ADSs for a random subset Q0, of increasing size. The state
machine used here is the big benchmark with 3410 states and 78 inputs. The
checkmarks (✓) indicate satisfiability and the crosses (×) indicate unsatisfiability.

Figure 5 shows the runtime for finding an ADS of given size in the big
benchmark. We observe that for small sets Q0 the solver is able to find adaptive
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distinguishing sequences in mere seconds. But already for 120 states (which is a
small fraction of the total 3410 states), the algorithm needs almost a full minute
to find an ADS or to prove unsatisfiability.

We also observe that bigger sets Q0 more often lead to unsatisfiability. For
these sets, a bigger bound could provide an ADS, at the cost of more computation
time. Interestingly, we see that the solver can prove unsatisfiability a bit faster
than satisfiability.

5 Conclusions and Future Work

We have presented and evaluated a reduction of UIO and ADS computation
to satisfiability checking of CNF formulae, such that the ADS and UIO can be
determined from the satisfying assignment of the formula. The experiments show
that the reduction is able to find many UIO sequences and ADSs. For the UIO
sequences it is competitive with a non-trivial search algorithm by Naik [Nai97].
Unfortunately, for the larger benchmark, the computation time is still rather
large. The experiments also show that, if sequences are found, they are often
short, even in larger models.

The reduction may add some overhead compared to direct implementations
for searching these sequences, but it is a versatile solution. The high level encoding
into logic allows us to change the requirements easily, without having to integrate
these changes in a search algorithm. One such variation is an extension to
partiality, meaning that the FSM might have an unknown behaviour for certain
input letters a ∈ I. This is the setting in the L♯ learning algorithm [VGRW22],
where all observations are gathered in a tree, which happens to be a partial
FSM. Here, the partiality expresses that the behaviour for certain inputs is still
unknown, as those inputs have not yet been tested. We are optimistic that the
our generic encoding techniques can also help finding adaptive distinguishing
sequences for partial Mealy machines and other flavours of finite-state machines
that arise in the future.
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suggestions by the referees that helped improving the present paper.
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