Output-decomposed Learning of Mealy Machines

14 May 2024
Rick Koenders and Joshua Moerman
LearnAut 2024

This will be presented at LearnAut24 on 2024-07-07.

Abstract

We present an active automata learning algorithm which learns a decomposition of a finite state machine, based on projecting onto individual outputs. This is dual to a recent compositional learning algorithm by Labbaf et al. (2023). When projecting the outputs to a smaller set, the model itself is reduced in size. By having several such projections, we do not lose any information and the full system can be reconstructed. Depending on the structure of the system this reduces the number of queries drastically, as shown by a preliminary evaluation of the algorithm.

arXiv
Repository